|   (a)加权平均后的结点失效方向 (a)Node failure direction afterweighted average 
 (b)单元内断裂 (b)Rupture in elements 
 (c) 单元间断裂 (c)Rupture between elements 图2 裂纹生成方式 Fig.2Crack formation way 当裂纹被引入之后,单元的损伤状态变量由于裂纹的形成而被恢复为初始值。理想的情况是只有垂直于裂纹的方向上的单元损伤被恢复为零,但是若有网格更新而生成了额外的新单元,则所有失效单元的状态变量全部初始化为零。 3 数值算例 假设冲击物为准脆性材料,被冲击物强度很高,冲击速度100m/s,计算模型的各项参数如表1所示,图3(a)给出计算用初始的网格剖分。图3(b)-(f)给出了准脆性材料冲击物裂纹开始产生及扩展的过程。由图可见,裂纹从接触处开始产生,随着时步的增加,裂纹扩展,由小的裂纹慢慢扩展成大的裂缝,接下来会有离散子块产生。 表1 准脆性材料冲击模型参数 
 
    
        
            |     | ρ(kg/m3) 密度 | E(GPa) 弹性模量 | Ν 泊松比 | ft(MPa) 抗拉强度 | Gf(J/m2) 断裂能 | p0 罚系数 |  
            | 冲击物 | 2340 | 26 | 0.18 | 3.15 | 3.0e+2 | 10e+9 |  
            | 被冲击物 | 3.0e+4 | 210 | 0.3 | 1.0e+14 | 3.0e+12 | 10e+9 |  the parameters of quasibrittle material impact model table1   (a) (b)   
 (c)(d)  
 (e)(f) 图3 准脆性冲击问题裂纹产生及扩展图 Fig3 cracking and extension figures of quasi brittle material impact problem (a)初始网格剖分 (b)裂纹开始产生(c)裂纹扩展 (d)- (f)开始产生较大的裂缝 (a) Initial mesh (b) Began to crack (c)crack propagation (d)-(f) Began to produce larger crack 4 结论 基于有限元动力问题中心差分算法,给出用于模拟冲击载荷作用下准脆性连续体多重破裂问题的可离散有限元法,针对准脆性材料的结构可以分裂、破碎的特点,建议采用不建立刚度矩阵的中心差分法求解。在准脆性材料只产生裂纹但没有达到破碎分离和不研究二次破碎问题时,线性小变形理论也还是可以采用的。但是为了描述分离子块的运动、碰撞及二次破碎问题,由于小块一般均有大位移、大转动,应该采用有限变形理论。由数值计算,我们发觉裂纹的发生、发展以及破裂现象对网格剖分是敏感的,但是只要网格剖分的足够密,裂纹的的发展趋势大致相同。 参考文献
 1.OňateE, Rojek J. Combination of discrete element and finite element methods fordynamic analysis of geomechanics problems[J]. Computer methods in appliedmechanics and engineering, 2004, 193(27-29): 3087~3128
 2.YuanqiangTan, Dongmin Yang, Yong Sheng. Discrete element method(DEM) modeling offracture and damage in the machining process of polycrystalline SiC[J]. Journalof the European Ceramic Society, 2009, 29(6): 1029~1037
 3.HoonLee, Ji Hoe Kwon, Kwan Ho Kim, Hee Chan Cho. Application of DEM model tobreakage and liberation behavior of recycled aggregate from impact-breakage ofconcrete waste[J]. Minerals Engineering, 2008, 21:761~765
 4.邢纪波,俞良群,王泳嘉.三维梁—颗粒模型与岩石材料细观力学行为模拟.岩石力学与工程学报,1999,16(6):627~630.(XingJ B, Yu L Q, Wang Y J. 3-D Beam-Particle Model for Simulating Meso-mechanical Behaviorof Rock Material[J]. YanTu LiXue Yu GongCheng XueBao/Chinese Journal of RockMechanics and Engineering, 1999,16(6):627~630 (in Chinese))
 5.胥建龙,唐志平.离散元与有限元结合的多尺度计算方法及其应用.计算物理,2003(20):477-482.(Xu K L, Tang Z P. Combined Discrete/Finite Element MultiscaleNumerical Method and Its Application[J]. JiSuan WuLi/Chinese Journal of ComputationalPhysics, 1999,16(6):627~630(in Chinese))
 6.傅华,刘仓理,王文强等.冲击动力学中离散元与有限元相结合的计算方法研究.高压物理学报,2006,20(4):379~385.(FuH, Liu C L, Wang W Q. A Combined Discrete/ Finite Element Method in Shock Dynamics[J].GaoYa WuLi XueBao/ Chinese Journal of High Pressure Physics, 2006, 20(4):379~385 (in Chinese))
 7.侯艳丽,张冲,张楚汉等.拱坝沿建基面上滑溃决的可变形离散元仿真.岩土工程学报,2005,27(6):657~661.(Hou Y L, Zhang C, Zhang CH. Simulationof upward-sliding failure of interface in arch dams by deformable distinctelements[J]. YanTu GongCheng XueBao/ Chinese Journal of Geotechnical Engineering, 2006, 20(4):379~385 (inChinese))
 8.Owen DR J, Feng Y T, Klerck P A, Yu J. Computationalstategies for discrete systems and multi-fracturing materials[J].Engineering Mechanics and Computation, 2001:135-146
 9.Owen DR J, Feng Y T. Parallelised finite/discrete element simulation of multi-fracturingsolids and discrete systems. Engineering computations, 2001,18(3,4): 557-576
 10.CottrellM G, Yu J, Owen D R J. The adaptive and erosive numerical modeling of confinedboron carbide subjected to large-scale dynamic loadings with element conversionto undeformable meshless particles[J]. International Journal of ImpactEngineering, 2003,28(9):1017-1035
 11.KlerckP A, Sellers E J, Owen D R J. Discrete fracture in quasi-brittlematerials under compressive and tensile stress states[J]. Computer methods inapplied mechanics and engineering, 2004, 193(27-29): 3035-3056
 12.MunjizaA, Owen D R J, Bicanic N. A combined finite-discrete element method intransient dynamics of fracturing solids[J]. International Journal ofComputational Engineering Science,1995,12:145-174
 13.Munjiza A. The combined finite-discrete elementmethod[M]. New York: John Wiley & Sons. 2004
 14.唐春安,王述红,傅宇方,岩石破裂过程数值试验,[M].北京:科学出版社,2003 (Tang Chunan, WangShuhong, Fu Yufang. Numerical Test of Rock Failure. Beijing: Science Press,2003 (in Chinese))
 15.YanjieLi, Yong Xu, Wenbing Huang,Y. Feng, D R J Owen. Experimental and numericalresearch on bulldozer working process[J]. Chinese Journal of MechanicalEngineering, 2007, 20(2):41-46
 
    2/2   首页 上一页 1 2 |