图1:随着迭代次数变化计算的纵向弹性模量的均值
Fig1:Mean of withrespect to iterations 

图2:随着迭代次数变化的计算的纵向弹性模量的均方差
Fig2:Standard deviation of withrespect to iterations 
图3、图4分别给出了随着迭代次数变化时,迭代时选取的纤维弹性模量的均值与方差,从这两个图可以看到当 时,均值与方差已经满足精度要求,此时的均值 GPa,均方差 GPa。

图3:随着迭代次数变化的纤维弹性模量的均值
Fig3: Mean withrespect to iterations 

图4:随着迭代次数变化的纤维弹性模量的均方差
Fig4: Standard deviation with respect to iterations 
4、结论
本文将地质统计学中克里金方法与均匀化方法相结合,考虑复合材料性能随机性,提出了进行复合材料组分材料性能随机性识别的克里金随机分析方法,并用这种克里金随机分析方法对单向纤维增强复合材料随机性进行了分析。在随机性识别反问题中设计了一个迭代程序,通过数值模拟,由单向纤维宏观性能的统计特征反演出纤维的统计特征。
参考文献:
[1].B. Budiansky. On the Elastic Moduli of some HeterogeneousMaterials[J]. J. Mech.Phys. Solids, 1965, 13:223–227.
[2].R. Hill. A Self-consistent Mechanics of Composite Materials[J]. J. Mech.Phys.Solids, 1965, 13:213–222.
[3].T.W. Chou, S. Nomura, M. Taya. A Self-consistent Approach to theElastic Stiffness of Short-fiber Composite [J]. Journal of CompositesMaterials, 1980, 14:178–188.
[4].R.M. Christensen, K.H. Lo. Solutions for Effective Shear Propertiesin Three Sphere and Cylinder Models [J]. J. Mech. Phys. Solids, 1979,27:315–330.
[5].R.M. Christensen. A Critical Evaluation for a Class ofMicromechanics Models [J]. J. Mech. Phys. Solids, 1990, 38:379–406.
[6].T. Mori, K. Tanaka. Average Stress Inmatrix and Average Engergy ofMaterials with Misfit ting Inclusion[J]. Acta Metall, 1973, 21:571–576.
[7].G.J.Weng. Some Elastic Properties of Reinforced Solids with SpecialReference to Isotropic Ones Containing Spherical Inclusions[J]. Int. J. Eng.Sci., 1984, 22:845–856.
[8].16Y. Benveniste. A NewApproach to the Application of Mori-tanaka’s Theory in Composite Materials [J].Mechanics of Materials, 1987, 6:147–157.
[9].O.A. Oleinik, A.S. Shamaev, G.A. Yosifian. Mathematical problems inelasticity and homogenization [M]. North-Holland, Amsterdan, 1992.
[10].Marcin Kaminski, Michal Kleiber. Perturbation based stochastic finite element method for homogenizationof two-phase elastic composites [J]. Computers and Structures, 2000,78:811–826.
[11].S. Sakata, F. Ashida, T. Kojima, et al. Three-dimensional stochasticanalysis using a perturbation-based homogenization method for elastic propertiesof composite material considering microscopic uncertainty [J]. InternationalJournal for Solids and Structures, 2008,45:894–907.
[12].S. Sakata, F. Ashida, T. Kojima. Stochastic homogenizationanalysis on elastic properties of fiber reinforced composites using the equivalentinclusion method and perturbation method [J]. International Journal ofSolids and Structures, 2008,45: 6553-6565.
[13].侯善芹,刘书田.颗粒增强复合材料弹性性能的统计特征分析[J]. 科学技术与工程, 2008, 8(15):4078–4082.( Hou Shanqin, Liu Shutian.Statistical characters of elastic properties of particle-reinforced composite materials[J]. Science Technology and Engineering, 2008, 8(15): 4078-4082.(in Chinese).)
[14].张仁铎.空间变异理论及应用[M]. 北京: 科学出版社, 2005.
[15].黄富华,梁军,杜善义.均匀化方法的ABAQUS 实现. 哈尔滨工业大学学报. 2010, 42(3): 389–392.( Huang Fuhua,Liang Jun,DU Shanyi. Realization ofhomogenization method with ABAQUS. Journal of Harbin Insitute ofTechnology,2010,42(3):389-392.(in Chinese).)
3/3 首页 上一页 1 2 3 |