另外发现早采缓降温U/S值到贮藏后期依然保持较高,这和缓降温明显提高果肉的亚油酸和亚麻酸含量,贮藏后期亚麻酸、油酸、亚油酸含量的减少贮藏后期依然保持较高水平,是吻合的。推迟采收提高了果肉和果心的U/S值,早采果果肉采收初期分别为2.16,而晚采果采收初期为2.45,这和果实成熟度高,晚采降低了果实的相变温度是对应的,说明了晚采收提高了果实的抗冷性。但随着贮藏时间的延长,LOX活性提高(图1),自由基含量快速增加,膜脂过氧化加剧,从而造成了晚采果褐变严重。
 
 
 
图3降温方法对早采和晚采鸭梨果肉膜脂脂肪酸含量及不饱和脂肪酸与饱和脂肪酸比值(U/S)的影响
Fig.3Effectsofdifferentcoolingmethodsonfattyacidcompositionandunsaturated-saturatedfattyacidratio(U/S)infleshandcoreofearlyharvestYalipear
A.亚油酸(18:2)B.亚麻酸(18:3)C.油酸(18:1)D.硬脂酸(18:0)E.棕榈酸(16:0)
F.不饱和脂肪酸与饱和脂肪酸比值(U/S)U/S=∑(18:1+18:2+18:3)/∑(16:0+18:0)
3讨论
陈昆松等发现猕猴桃LOX活性随果实后熟过程持续上升,其活性与果实硬度呈显著负相关。许多实验表明,LOX直接或间接参与了乙烯的合成。DePooter等发现苹果贮藏过程中LOX活性增加与ACC积累、乙烯的生成呈正相关,LOX启动果实成熟诱导系统I乙烯产生,进而致使系统Ⅱ乙烯生成,加速果实成熟衰老。番茄果实从绿熟期到转红期的成熟进程,伴随LOX活性增加,外源LOX处理可增加果实组织的电导率,加速果实成熟衰老。而本实验结果也表明鸭梨果实贮藏前期,LOX与果实呼吸和乙烯高峰同步,与鸭梨的成熟衰老有一定关系,后期LOX活性随着果实成熟和衰老而升高,这与猕猴桃、‘DoyenneduComice’梨报道的LOX活性变化趋势一致。LOX活性的变化规律与果实的褐变规律相似性说明了LOX与果实褐变有一定关系。
沈同等认为低温环境中脂肪酸去饱和作用的酶增加,可以促进饱和脂肪酸转变为不饱和脂肪酸,Yamaki等认为,脂肪酸的不饱和度与膜的相变有密切关系,不饱和膜脂含量高时,膜流动性大,膜的相变温度较低;反之膜的流动性小,相变温度较高。一般而言,能够在温度下降时迅速提高不饱和脂肪酸含量,就会在较低的温度下仍能保持其膜的流动性,从而表现为较强的抗冷性。王阳光等报道贮前加温提高了桃果的亚油酸含量、中途加温提高了亚麻酸含量,二者通过提高不饱和膜脂脂肪酸含量而提高桃果实抗冷性。陈昆松等研究发现,在猕猴桃果实后熟软化过程中的LOX活性与膜脂脂肪酸组分的变化一致,在果实采后初期,随着LOX活性的增高,底物亚油酸和亚麻酸被消耗,并启动膜脂过氧化作用,LOX自我活化,促使细胞膜释放出游离脂肪酸,致使LOX底物亚油酸和亚麻酸迅速积累。在香蕉果实成熟过程中,跃变前期,亚麻酸增加缓慢,跃变上升期增加迅速,而该过程亚油酸组分呈下降变化,吴敏等道桃果实采后在20℃后熟过程中,棕榈酸和硬脂酸组分变化相对平稳,且硬脂酸含量很低,推测是由于硬脂酸作为油酸的前体物质,很容易在脂肪酸脱饱和酶的作用下转化为油酸之故,亚麻酸为LOX初期底物。本实验认为在鸭梨果实采后,LOX可能首先以亚麻酸为底物,随着亚油酸积累,启动LOX自我活化,促使膜脂过氧化进一步加剧。
4结论
1)在贮藏期间,LOX活性缓慢上升,晚采果活性较高;缓慢降温抑制了LOX活性的升高,对早采果影响更大。贮藏后期,随着LOX活性的升高,亚油酸、亚麻酸的含量减少,二者可能是LOX的反应底物。
2)果肉中含有月桂酸、豆蔻酸、棕榈酸、棕榈油酸、珠光酸、硬脂酸、油酸、亚油酸、亚麻酸,几乎没有花生酸、花生烯酸、花生四烯酸、廿二碳五烯酸,其中含量最多的是亚油酸、棕榈酸和油酸。
3)缓慢降温提高了鸭梨果肉的亚麻酸及中前期的亚油酸含量,贮藏后期依然保持较高水平,但是由于LOX活性高,膜脂过氧化严重,自由基产生较多,从而造成了后期果实亚油酸含量的下降,导致晚采果更容易褐变。
4)推迟采收和缓慢降温提高了果肉的U/S值,果肉在贮藏中的不饱和脂肪酸与饱和脂肪酸比值(U/S)总体呈现先升后降的趋势,且贮藏后期下降较快,这与贮藏后期LOX活性较高,氧化了更多的不饱和脂肪酸有关。
参考文献
1 Lynch D V, Steponkus P L. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings. Plant Physiol, 1987,83: 761-767
2 Uemura M, Stepondus P L. A contrast of the plasma membrane lipid composition of out and rye leaves inrelation to freezing tolerance. Plant Physiol, 1994, 104: 479-496
3 Yamaki S, Uritani L. Mechanism of chilling injury in sweet potatoes V. Biochemical mechanism of chilling injury with specialre ference tomitochondrial components. Agr. Biol. Chem., 1972: 47-55
4 Wang Yangguang, Mao Linchun, Lu Shengming, etal. Effects of heat treatment on enzymes and fatty acid of peach[J].Journal of Food Science,2001,22(4):72-74
5 Wu Min,Chen Kunsong, Zhang Shanglong, etal. Changes of lipoxygenase activity and memberane fattyacid composition in postharvest ripening peach (Prunus persicaL.) fruit[J].Acta Horticulture Sinica, 2001, 28 (3): 218-222
6 Wade N L. Membrane lipid composition and tissue leakage of pre-and eaxlpclimactexic banana fruit. Postharvest Biology and Technology, 1995, 5: 139-147
7 Lurie S, Ben A R. Microsomal membrane changes of apples during storage. Sci. Hort.,1987, 32: 73-83
8 Chen KunSong, Xu ChangJie, Lou Jia, etal. Lipoxygenase in relation to the ripening and softening of actinidiafruit. Acta Phytophysiologica Sinica,1999, 25(2):138-144
9 Gerasopoulos D, Ricchardson D G. Effects of storage temperature on fatty acids composition of ‘Anjou’ pears. Acta Horticulturae,1995, 379: 459~466
10 Guo Jinquan, Chen Wentao, Wang Zhenquan, etal.Effect of temperature on membrane fatty acid composition in leaves ofANANAS COMOSUS (L) MERR. and their relation to cold resistance. Acta phytophysiologicasinica,1985,11(4):319-327
11 Uemura M, Joseph R A,Stepondus P L. Cold acclimation of Arabidopsis thaliana:Effect on plasma membrane composition and freezing induced lesions. Plant Physiol, 1995,109: 15~30
12 Luo Yunbo. Effects of lipoxygenase on the postharvest physiology of tomato. Acta HorticulturaeSinica, 1994, 21(4): 357~360
13 Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Can. J. BiochemPhysiol. 1959, 37: 911~917
14 苏维埃, 王文英, 李锦树. 植物类脂及其脂肪酸的分析技术. 植物生理学通讯, 1980(3): 54~60
15 Saquet A A, Streif J, Bangerth F. Energy metabolism and membrane lipid alterations in relation to brown heartdevelopment in ‘Conference’ pears duringdelayed controlled atmosphere storage. Postharvest Biology and Technology, 2003,30: 123~132
16 沈同主编. 生物化学. 北京:高等教育出版社, 2001
17 Harwood J L. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol . Biol,1988,39:10~13
18 Yan Shijie, Chen Jiluan, Liang Liya, etal. Effects of different cooling methods on some physiological indexes of different maturityYali pear after harvest. Journal of Chinese Institute of Food Science andTechnology, 2008,8(4):96-101
19 De Peoter H I, Sehamp N M. Involvemext of lipoxygexase mediated lipid catabolism in the start of theautocatalytle ethylene production by apples(cv .Golden Delicilds)aripening hypathesis. Acta Harticiitue, 1989, 258: 47-53
20 Lara L, Miro R M, Fuentes T,et al. Biosynthesis of volatile aroma compounds in pear fruit stored under long-term controlled-atmosphere condition. Postharvest Biology and technology.2003, 29: 29-39 3/3 首页 上一页 1 2 3 |