(35)
与
(36)
3.3非线性方程求解
本文使用牛顿-芮弗逊(Newton-Raphson)法迭代求解得到的非线性平衡方程(35)。步骤如下:
1)取线性解作为第一次迭代使用的近似解 。
2)将代入式(36)计算 。
3)由式(35)确定KG_T
4)由公式
(37)
得节点位移修正量,再由 得到节点参数修正量,进而求出下次迭代使用的近似解
(38)
5)返回第(2)步,重复第(2)~(5)步直到 充分小,这样得到的 即为最终的解。
4 算例
4.1收敛性检验
为了检验本文方法的收敛性,考虑一个由两块相同方平板组成的单折板,平板边长L=2m,板厚hp=0.05m,在a、b两边固支,另两边为自由端(图4,夹角q=90°)物理论文,E=3′109Pa,m=0.3。均布荷载q=6′104Pa垂直地作用在各平板。本文方法的离散方案为:各平板,n′n均布节点,方形影响域:
(39)
hx为影响域X向长度,hy为Y向长度,Ix为X向相邻两节点间距,Iy为Y向相邻两节点间距。当n从3变化到11,且dmax=3,4,5(代表不同大小的节点影响域)时,由本文方法计算的板A中点的挠度显示在图5中,并与有限元解进行比较。图5中的有限元解是通过ANSYS软件,将该折板模拟为壳结构,选用SHELL181单元进行大挠度分析后求得,共使用单元:5000个。定义为
(40)
其中w为板A中面中点的挠度。从图5可见不论dmax取何值,随着离散节点数n′n的增大,本文解均收敛于有限元ANSYS解。
图4. 单折板图5. 板A中点的挠度 的变化情况
Fig 4. One-fold plate.Fig 5. Variation of the central deflection of the flat plate A
4.2 四面板
如图6,用四个尺寸相同的矩形平板相互垂直地首尾相连组成一个四面板结构,一边固支。在各板上垂直作用均布荷载q,q变化范围为0~500Pa。由本文方法和大挠度有限元分析得到的荷载-A板中点挠度w曲线显示在图7中(包括有限元线性解),其中本文解采用的离散方案取n=9,dmax=4中国期刊全文数据库。有限元解也是通过ANSYS软件将该折板模拟为壳结构,使用SHELL181单元对结构进行离散后求得,单元数:6400。
图6. 四面板图7. A板中点挠度-荷载曲线
Fig.6 A four-panel plate Fig. 7 Centraldeflection-load curve of plate A
4.3 浅圆柱壳
考虑一个经典问题——浅圆柱壳在集中荷载P作用下的大变形行为(图8)。壳的曲边自由,直边铰接物理论文,E=3.10275 GPa,m=0.3,R = 2.54 m,L = 0.508 m,h = 0.0127 m,b = 0.1 rad。
由于对称性,只需研究该结构的一半,一个七折板被用来近似这一半的壳(图9,S = 0.03175 m)。又由于该浅圆柱壳在不断增大的荷载P作用下会发生跳跃(snap-through)现象,为了捕捉整个荷载-中点挠度曲线,使用弧长法(arc-length method)[18,19]代替牛顿-芮弗逊法来求解这个问题。图10中展示了本文方法及其他研究者[20, 21]给出的该壳荷载P-中点挠度曲线。两者非常接近。
图8. 竖向集中荷载P作用下的浅圆柱壳图9. 近似半个圆柱壳的七折板
Fig. 8 The shallow cylindrical shell subjected toFig. 9 A seven-fold plate used to approximate the
a concentrated verticalload.half of the shallow cylindrical shell.

图10. 浅圆柱壳的荷载P-中点挠度曲线
Fig. 10 The load-central deflection curve of theshallow cylindrical shell.
5 结论
本文提出一种求解折板及多面板结构非线性弯曲问题的样条核质点法。将折板模拟为平板组成的复合结构,先基于冯·卡门的大挠度理论,利用一阶剪切变形理论和样条核质点法建研究各平板的几何非线性行为,推导出相应的控制方程,再将各平板叠加成折板或多面板,得到描述整个结构的几何非线性行为的控制方程。文末通过两个算例与有限元分析及现有文献结果做了比较,验证了本文方法的准确性。本文方法也可用于壳、箱梁和封闭结构的大挠度分析。
参考文献
[1]Task Group of theSubcommittee on Masonry and Reinforced Concrete of the Structural Division.Phase I report on folded plate construction [J]. Journal of StructuralDivision, ASCE, 1963, 89: 365-406.
[2]Gaafar I. Hipped plate analysisconsidering joint displacement [J]. Trans ASCE, 1954, 119:743-784.
[3]Yitzhaki D. Prismaticand Cylindrical Shell Roofs [M]. Haifa, Israel, Haifa Science, 1958.
[4]Yitzhaki D, Reiss M.Analysis of folded plates. J Struct Div, ASCE, 1962, 88: 107-142.
[5]Whitney C S, AndersonB G, Birnbaum H. Reinforced concrete folded plate construction [J]. Journal ofStructural Division, ASCE, 1959, 85: 15-43.
[6]Goldberg J E, Leve H L.Theory of prismatic folded plate structures [J]. Int Ass Bridge and StructuralEngineering, 1957, 17: 59-86.
[7]Baryoseph P, HersckovitzI. Analysis of folded plate structures [J]. Thin-Walled Structures, 1989, 7:139-158.
[8]Lai Y, Wu Z, Zhu Y, Sun A. Geometrical non-linearanalysis of a simply-supported cross V-shaped folded plate roof [J]. Thin-Walled Structures, 2000, 37: 259-275.
[9]Cheung Y K. Foldedplate structures by finite strip method [J]. J Struct Div, ASCE, 1969, 95: 2963-2979.
[10]Ohga M, Shigematsu T, KohigashiS. Analysis of folded plate structures by a combined boundary element-transfermatrix method [J]. Computers & Structures, 1991, 41(4): 739-744.
[11]Duan M, Miyamoto Y. Effectivehybrid/mixed finite elements for folded-plate structures [J]. Journal ofEngineering Mechanics, 2002, 128(2): 202-208.
[12]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal forNumerical Methods in Engineering, 1994, 37: 229-256.
[13]Chen J S, PanC, Wu C T, Liu W K.Reproducing kernel particle methods for large deformation analysis of nonlinearstructures [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139: 195-227.
[14]Liew K M, Zou G P, Rajendran S. A spline strip kernel particlemethod and its application to two-dimensional elasticity problems [J].International Journal for Numerical Methods in Engineering, 2003, 57: 599–616.
[15]Peng L X, Kitipornchai S, Liew K M. Bending analysis offolded plates by the FSDT meshless method [J].Thin-Walled Structures, 2006, 44(11):1138-1160.
[16]李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用[J]. 固体力学学报, 2001, 22(4): 361-367.(Li Wodong, Wang Yuanhan, Tham LG. Application of meshless method to elasto-plasticproblems [J].ACTA MECHANICA SOLIDA SINICA, 2001, 22(4): 361-367 (in Chinese).)
[17]Reddy J N. Theory and analysis ofelastic plates [M]. Taylor & Francis, London 1999.
[18]Zhou Z L, Murray DW. An incremental solution technique for unstable equilibrium paths of shellstructures [J]. Computers and Structures, 1994, 55: 749-759.
[19]MagnussonA, Svensson I. Numerical treatment of complete load-deflection curves [J].International Journal for Numerical Methods in Engineering, 1998, 41: 955-971.
[20]DuarteF L A, Awruch A M. Geometrically nonlinear static and dynamic analysis ofshells and plates using the eight-node hexahedral element with one-pointquadrature [J]. Finite Elements in Analysis and Design, 2004, 40: 1297–1315.
[21]Sze K Y, Liu X H, Lo S H. Popular benchmark problemsfor geometric nonlinear analysis of shells [J]. Finite Elements in Analysis andDesign, 2004, 40: 1551–1569.
3/3 首页 上一页 1 2 3 |