论文导读:排列组合应用题思维抽象,解法独特且灵活多变,搞好排列组合应用题的教学对训练学生的思维,培养学生分析问题、解决问题的能力都有十分重要的意义。“加法原理”和“乘法原理”是推导排列组合种数计算公式的重要依据,也是解排列组合问题的关键。推导排列组合公式要用“两个原理”,解决排列组合应用题也要用“两个原理”,因此在排列组合内容的教学中应把“两个原理”的教学贯穿始终。
关键词:排列,组合,应用题
排列组合应用题思维抽象,解法独特且灵活多变,搞好排列组合应用题的教学对训练学生的思维,培养学生分析问题、解决问题的能力都有十分重要的意义。那么,如何搞好这部分内容的教学呢?笔者结合自己多年的教学经验谈几点体会。
一、抓住“两个原理”
1.重视对“两个原理”的教学。“加法原理”和“乘法原理”是推导排列组合种数计算公式的重要依据,也是解排列组合问题的关键。授课时应结合实际多举些例子,让学生明确哪一类问题用“加法原理”,哪一类问题用“乘法原理”;让学生明确在考虑应用两个原理解决问题时,要注意“完成一件事”的办法是分步进行还是分类完成。如果是分步进行,就找出完成每一步的方法数,运用乘法原理来解决;如果是分类完成的,就找出每一类的方法数,运用加法原理来解决。
例1:有五个球要放在三个盒中,共有多少种不同的放法?
此问题的关键是5个球都要放到盒中,而每个球都有3种放法,把其中某个球放到盒中是完成“5个球放到盒中”这件事的一个步骤,只有5个步骤全部完成这件事才算完成,按乘法原理有3×3×3×3×3﹦ ﹦245(种)
例2:从甲地到乙地每天有1班火车,2班轮船,4班汽车。王红要从甲地到乙地,乘坐这三种交通工具一天有多少种不同走法?
此问题的关键是王红无论乘火车、乘轮船还是乘汽车都能完成从甲地到乙地这件事,且乘火车有1种方法,乘轮船有2种方法,乘汽车有4种方法,按加法原理有1+2+4﹦7(种)
2.贯穿“两个原理”于教学始终。推导排列组合公式要用“两个原理”,解决排列组合应用题也要用“两个原理”,因此在排列组合内容的教学中应把“两个原理”的教学贯穿始终。每解一道题都要注意分析“完成一件事”是分步还是分类,进而明确是用加法原理还是用乘法原理。经过经常化训练,慢慢地学生就会对“两个原理”运用自如了。
二、辨清“排列”“组合”
在解排列组合应用题时,在明确了使用哪个原理的同时,还要提醒学生注意分辨是排列问题还是组合问题。排列是按一定顺序排成的一列元素,两个排列的不同,意味着两个排列的元素不同或元素相同,但元素的排列顺序不同。组合是无顺序约束的一组元素,两个组合的不同,意味着当且仅当两个组合元素的不同。要辨清所解问题是排列还是组合,主要看这个问题与元素的排序有无关系,有关是排列问题,无关是组合问题。
例3:用1分、2分、5分的硬币各一枚,可以组成多少种不同的币值?
三种硬币组成不同币值的方式可分为三类,即分别用一枚两枚三枚组成,且无论用几枚硬币所组成的币值种数与硬币的排序无关,因此是组合问题,共 + + ﹦7(种)
例4:某信号兵用红、黄、蓝三面旗,从上到下插在竖直的旗杆上表示信号,每次可插一面、两面、三面,一共可以表示多少种不同的信号?
解此类问题时要求学生联系实际。挂旗表示信号,与各色旗的上下顺序有关,因此是排列问题。信号又可分为三类,用一面旗、两面旗、三面旗都可独立表示不同信息,因此有 + + ﹦15(种)
三、总结常用方法
讲排列组合应用题时,教师不要急于教给学生解各类问题的方法,可先让学生广开思路,从不同角度分析问题,再把学生的解题方法汇集起来,然后让大家讨论,哪种方法巧妙,哪种方法带有一般性,是常用方法。经归纳总结,解排列组合应用题有以下几种常用方法。
1.直接法。就是根据题中的约束条件,直接使用两个原理,从正面求出符合题意的排列(组合)种数。
例5:五人并排照相,甲必须在中间有多少种不同排法?
解:假设有排好了顺序的五个位置,不考虑甲,先在四个人中选一人站在一号位,再从其余的三人中选一人站在二号位,三号位留给甲,四号位从余下的二人中选,剩下的1人就是五号位了。共有排法   ﹦24(种)。也可从把除甲外的四人全排,在每一种排法中让甲站在中间有 ﹦24(种)。
2.间接法。就是从不考虑约束条件的排列(组合)中剔除不符合约束条件的排列(组合)种数。如例5的间接求法。
解:把5个人的全排列剔除甲不在中间位置的排法,有 -4 ﹦24(种)。
3.特殊元素优先法。排列组合问题中有些元素有一定的特殊约束条件,求解时先考虑有特殊约束条件的元素。如例5,甲是有特殊约束条件的元素,所以先把甲放在中间位置,其余4人在另外四个位置任意排列,有 ﹦24(种)。
1/2 1 2 下一页 尾页 |