| Fig.1 IRAP profiles of four different retrotransposonprimers on 12 ‘Mopanshi’ genotypes A: rtdk4-p3; B: rtdk2-p6; C: rtdk13-f5; D: rtdk16-r10 M: DL2000marker. 1. BZMP; 2-12. MP2-MP12. Black arrowsindicated special bands in a certain genotypes 表4 可用于鉴别12份磨盘柿基因型的有效IRAP标记(bp) Table 4 Useful inter-retrotransposon amplified polymorphic (IRAP) markers, inbasepairs (bp), for the identification of 12 ‘Mopanshi’ genotypes 
 
    
        
            | 引物 Primer | 样品 Materials | 可识别基因型Identifiable genotypes |  
            | BZMP | MP2 | MP3 | MP4 | MP5 | MP6 | MP7 | MP8 | MP9 | MP10 | MP11 | MP12 |  
            | rtdk4-P3 | 875 | A | A | A | A | A | A | A | A | A | A | A | BZMP, MP3, MP9, MP10 |  
            |     | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | A | 580 | 580 |  
            |     | 750 | A | 750 | 750 | 750 | 750 | 750 | 750 |     | 750 | 750 |  
            |     |     | A |     |     |     |     |     | 720 |     |     |     |  
            | rtdk2-P6 |     | 720 |     | A | 720 | 720 | A | 720 |     |     | 720 | 720 | MP4, MP7 |  
            |     |     |     | A |     |     | 440 |     |     |     |     |     |  
            | rtdk13-f5 |     | 750 |     |     | A | 750 |     | A |     |     | A | A | MP2, MP6, MP8, MP11 |  
            |     | A |     |     |     | 630 |     |     |     |     |     |     |  
            |     |     |     |     | A |     |     | A |     |     | 875 | A |  
            |     |     |     |     | 740 |     |     | A |     |     |     | 740 |  
            | rtdk16-10 |     |     |     |     | 375 |     |     |     |     |     |     | A | MP5, MP12 |  注:A:供试基因型中缺失的标记 Note: A: marker absent in tested genotypes 
 图2 基于IRAP分子标记的20份磨盘柿基因型UPGMA聚类图 Fig.2 Dendrogram of 20 genotypes revealed by UPGMAcluster analysis based on IRAP molecular data 由UPGMA 聚类所得的树状图(图2)可见,在相似指数0.92水平上亲缘关系,12份‘磨盘柿’基因型紧密相聚,之后与同为中国原产的完全甜柿品种-‘罗田甜柿’相聚形成Cluster1。供试日本原产柿品种相聚为Cluster2,且‘次郎’与其芽变‘前川次郎’直接相聚,然后与其子代‘阳丰’聚为一支;富有与其芽变‘松本早生’先相聚,再与‘松本早生’芽变‘上西早生’聚为一支。君迁子作为外类群,与柿(Cluster1、Cluster2)明显分开,形成单独一支。 3 讨论 据北京市房山区林业局在成熟期、果实形态、耐贮性及植株抗性等方面的调查结果初步表明,供试变异单株与‘磨盘柿’有别亲缘关系,且性状表现基本稳定(数据未发表)论文网站大全。本试验通过逆转座子分子标记技术,检测到它们与标准品种间存在不同程度的遗传差异,表明其遗传物质已发生改变,并非饰变。这些变异单株的发现和鉴定可能为‘磨盘柿’芽变新品种选育提供了理论依据。 本试验试材代表了柿属不同程度的变异,包括种间、种下品种间、亲本与子代间,以及直接芽变和间接芽变品种的变异。君迁子作为与柿的亲缘关系较近,二者间平均相似指数0.68;不同柿品种间的平均相似指数低于0.89;芽变品种间的平均相似指数大于0.89。供试的11个变异单株与其标准品种间的平均相似性为0.91,大于种间和普通品种间的相似水平亲缘关系,与芽变品种间的相似水平接近;从聚类图上看,变异单株间及其与标准品种间的分支模式也与种间和普通品种间明显不同,结合DNA分析结果和形态学特征可初步判断供试变异单株应该属于‘磨盘柿’的芽变。 逆转座子变异可能是植物芽变的机制之一[18],本研究结果也表明逆转座子可能参与了柿芽变的形成,而不同试材间的相似指数的差异,可能反映基因组变异的部分细节。如‘前川次郎’和‘次郎’、‘富有’和‘松本早生’、‘DMP2’和‘BZDMP’以及‘DMP10’和‘DMP7’、‘DMP8’间,可能表明逆转座子插入只涉及很少位点或少数基因的突变;如‘富有’和‘上西早生’,‘DMP3’、‘DMP10’、‘DMP11’和‘BZDMP’间则可能涉及基因组中较大的结构变化,包括染色体畸变以及由此所致的基因或DNA分子的线性顺序变化。 参考文献References
 [1]KALENDAR R, GROBT, REGINA M, SUONIEMI A, SCHULMAN A. IRAP and REMAP: two newretrotransposon-based DNA fingerprinting techniques [J]. Theoreticaland Applied Genetics, 1999, 98: 704-711.
 [2]BRETóM P, RUIZ C, PINA J A, ASíNS M J. The diversification of Citrusclementina Hort. ex Tan., a vegetatively propagated crop species [J]. MolecularPhylogenetics and Evolution, 2001, 21: 285-293.
 [3]DU Xiao-yun, ZHANGQing-lin, LUO Zheng-rong. Development of retrotransposon primers and theirutilization for germplasm identification in Diospyros spp. (Ebenaceae) [J]. Tree Genetics and Genomes, 2009a, 5: 235-245.
 [4]DU Xiao-yun,ZHANG Qing-lin, LUO Zheng-rong. Identification of a Chinese PVNA type ofJapanese persimmon discovered from Dabieshan region in central China [J]. Acta Horticulturae, 2009b, 833: 97-102.
 [5]D’ONOFRIO C,LORENZIS G D, GIORDANI T, NATALI L, CAVALLINI A, SCALABRELLI G.Retrotransposon-based molecular markers for grapevine species and cultivarsidentification [J]. Tree Genetics Genomes, 2010, 6: 451-466.
 [6]TEO C H, TAN S H,HO C L, FARIDAH Q Z, OTHMAN Y R, HESLOP-HARRISON J S, KALENDAR R, SCHULMAN A H.Genome constitution and classification using retrotransposon-based markers inthe orphan crop banana [J]. J Plant Biology, 2005, 48: 96-105.
 [7]MANNINEN Q, KALENDARR, ROBINSON J, SCHYKNAB A H. Application of Bare-1 retrotransposon markers tothe mapping of a major resistance gene for net blotch in barley [J]. Molecular Genetics andGenomics, 2000, 264: 325-334.
 [8]YONEMORI K, SUGIURA A, YAMADA M. Persimmon genetics and breeding [J]. PlantBreeding Review, 2000, 19: 191-225.
 [9]GOUL?O L, CABRITAL, OLIVEIRA C M, LEIT?O J M. Comparing RAPD and AFLPTM analysis indiscrimination and estimation of genetic similarities among apple (Malusdomestica Bork.) cultivars [J]. Euphytica, 2001, 119: 259-270.
 [10]BERNETG P, MESTRE P F, PINA J A, ASíNS M J. Molecular discriminationof lemon cultivars [J]. HortScience, 2004, 39: 165-169.
 [11]MASE N, IKETANIH, SATO Y. Analysis of bud sport cultivars of peach (Prunus persica (L.)Batsch) by simple sequence repeats (SSR) and restriction landmark genomicscanning (RLGS) [J]. Journal of Japan Society for HorticulturalScience, 2007, 76: 20-27.
 [12]LABRA M, IMAZIOS, GRASSI F, ROSSONI M, SALAF. Vine-1 retrotransposon-basedsequence-specific amplifiedpolymorphism for Vitis vinifera L[J]. genotyping. Plant Breeding, 2004, 123: 180-185.
 [13]VENTURI S, DONDINIL, DONINI P, SANSAVINI S. Retrotransposoncharacterisation and fingerprinting of apple clones by S-SAP markers [J]. Theoretical and AppliedGenetics, 2006, 112: 440-444.
 [14]DOYLE J J, DOYLE J L.A rapid DNA isolation procedurefor small quantities of fresh leaf tissue [J].Phytochemistry Bulletin, 1987, 19: 11-15.
 [15]DUXiao-yun, LUO Zheng-rong. Establishmentof the inter-retrotransposon amplified polymorphism (IRAP) reaction system and constructionof fingerprint in some Diospyros spp. [J]. Journalof Agricultural Biotechnology,2006, 14(6): 931-936.
 
    2/2   首页 上一页 1 2 |