应用DNAman软件分析JWB-NTSH和JWB-NTSX,同源性达到99.37%,通过Blast对比,与报道的植原体相关片段的同源性达到88%以上(表1),说明枣树枣疯病植原体随地域的变异不大,并且变异的区域被发现在几个较为集中的碱基上,使得枣疯病植原体的分类比较容易,有利于进行PCR检测植原体病害的存在。
表1枣疯病植原体与16Sr各组植原体核苷酸同源性分析
Table1AnalysisofNucleotideofJujubeWitchesBroomPhytoplasmaandphytoplasmaof16Srgroup
亚组分类
subgroup
|
相关植原体株系
Associated phytoplasma
|
Genbank
登录号
Genbank Accession No.
|
核苷酸的同源性
Nucleotide homology(%)
|
16Sr Ⅰ-A
|
番茄巨芽Tomato big bud(TBB)
|
L33760
|
89.41%
|
16Sr Ⅰ-B
|
西方翠菊黄花Severe westem aster yellow(SAY)
|
M86340
|
89.21%
|
16Sr Ⅰ-C
|
三叶草绿变Clover phyllody(KVF)
|
AF222066
|
89.69%
|
16Sr Ⅰ-D
|
泡桐丛枝Paulownia witches’broom(PaWB)
|
AY265206
|
89.21%
|
16Sr Ⅰ-E
|
杏褪绿卷叶Blueberry stunt-16Sr-E
|
AY265213
|
89.13%
|
16Sr Ⅰ-F
|
草莓褪绿Apricot chlorotie leaf roll
|
AY265211
|
89.34%
|
16Sr Ⅱ-A
|
甘薯簇叶病Sweet potato witchs’ broom(SPWB)
|
DQ452417
|
88.80%
|
16Sr Ⅱ-B
|
酸橙丛枝Witches’broom of line (WBDL)
|
U15442
|
88.73%
|
16Sr Ⅱ-C
|
蚕豆变叶Faba bean phyllody (FBP)
|
X83432
|
88.31%
|
16Sr Ⅱ-D
|
甘薯小叶Sweet potato little leaf(SPLL-V4)
|
AJ289193
|
88.66%
|
16Sr Ⅱ-E
|
木瓜黄皱 apaya yellow crinkle(PpYC)
|
Y10097
|
88.66%
|
16Sr Ⅲ
|
桃西方X病Peach westem-X disease, WX
|
L04682
|
92.67%
|
16Sr Ⅳ
|
椰子致死黄花Coconut lethal yellowing(LY)
|
L18747
|
93.72%
|
16Sr Ⅴ-A
|
榆丛枝病Elm witches’-boom(ULW)
|
L33763
|
98.39%
|
16SrⅤ-B
|
枣疯病Jujube witches’-broom (JWB )
|
AY197661
|
99.65%
|
|
枣疯病山西株JWB-NTSH
|
GU594058
|
99.37%
|
16SrⅤ-C
|
悬钩子丛枝病Rubus stunt (RuS)
|
Y16395
|
90.00%
|
16Sr Ⅵ
|
三叶草簇叶Clover proliferation (CP)
|
L33761
|
92.74%
|
16SrⅦ
|
白蜡树黄化Ash yellows(AshY)
|
X68339
|
95.61%
|
16SrⅧ
|
丝瓜丛枝Loofah itches’broom(LfWB)
|
L33764
|
94.77%
|
16SrⅨ
|
木豆丛枝Pigeon pea witches’boom(PPWB)
|
AF248957
|
92.26%
|
16SrⅩ
|
苹果丛簇Apple proliferation(AP)
|
AF248958
|
90.01%
|
16SrⅩI
|
水稻黄矮Rice yellows dwarf (RYD)
|
D12581
|
93.23%
|
16SrⅩII
|
澳大利亚葡萄黄化Australian grapevine yellows(AGY)
|
X76427
|
87.87%
|
16SrⅩIII
|
墨西哥大草白叶Mexican periwinkle virescence(MPV)
|
AF248960
|
88.45%
|
16SrⅩIV
|
百慕大草白叶Bermuda grass white leaf (BWL)
|
EF444486
|
93.23%
|
16SrⅩV
|
扶桑丛枝Hibiscus witches -broom(HibWB)
|
AF147708
|
88.66%
|
2.4构建系统进化树
将JWB-NTSH和JWB-NTSX同已报道的16SrRNA进行对比,构建进化树,通过软件ClustalX1.81和软件的MEGA4构建进化树从GenBank中挑选植原体16SrDNA的15个种,27条具有确定种属关系的代表性序列(见表1),把这些序列通过ClustalX1.81进行分析,并应用MEGA4软件构建系统进化树。如图3所示,其中JWB-NTSX被划分到16SrDNAV-B中,和已知的枣疯病植原体属于同一个亚种,JWB-NTSH和JWB-NTSX还是有一定的差异性,说明枣疯病植原体随地域的变化可能发生变异,但是变异的碱基比较集中,和Blast中搜索的植原体变异的区域类似,说明同枣疯病植原体序列比较保守,这使得枣疯病的分类比较容易,更有利于枣疯病分类及其检测的研究。
图3枣疯病植原体及相关植原体16SrRNA基因核苷酸序列的系统发育树
Fig.3PhylogenetictreeofJWBandotherrelatedphytoplasmasbasedonthe16SrRNAgenesequences
2.4RFLP模拟
通过软件pDRAW32软件对JWB-NTSH,JWB-NTSX及JWB以及PPWB进行模拟RFLP试验,其中选取已报道的区别16SrDNA种属的17种典型的限制性内切酶。实验结果表明JWB-NTSX和JWB-NTSH及JWB酶切图基本相同,其中JWB-NTSH和JWB在HaeIII和MseI两处不同,JWB-NTSX和JWB在RsaI一处不同。说明JWB-NTSX和JWB的关系比JWB-NTSH和JWB的关系近。而JWB-NTSH和JWB-NTSX均和PPWB的酶切图在AluI、BstUI、DraI、HinfI等处不同,此结果进一步验证系统进化树的分析结果的正确性。说明来自陕西和山西的枣树植原体均属于16SrDNAV-B组。
图4JWB模拟RFLP图图5JWB-NTSHRFLP
Fig.4VirtualRFLPpatternsofJWB-NTSXFig.5VirtualRFLPpatternsofJWB
 
图6JWB-NTSX模拟RFLP图图7PPWB模拟RFLP图
Fig.6VirtualRFLPpatternsofJWB-NTSHFig.7VirtualRFLPpatternsofPPWB
3讨论
本文主要研究的是通过对患有枣疯病的植株进行总DNA提取,利用Lee设计的通用引物对枣疯病总DNA进行PCR扩增,克隆测序,获得16SrDNA的部分序列。通过研究16SrDNA的序列,发现来自陕西和山西不同地方的带病植株,其序列的同源性达到99.37%,与报道的植原体相关片段的同源性达到88%以上。通过查阅植原体16SrDNA相关文献,挑选出植原体16SrDNA的15个种,27条种属明确的代表性序列。通过构建系统分类树,发现JWB-NTSH和JWB-NTSX均属于16SrDNAV-B中,与已经报道的植原体分类相符合。同时挑选出关于植原体16SrDNA分类的典型的17种限制性内切酶,模拟RFLP对其分类做进一步验证,JWB-NTSX和JWB-NTSH及JWB酶切图基本相同,而JWB-NTSH和JWB-NTSX均和PPWB的酶切图在AluI、BstUI、DraI、HinfI等处不同,说明JWB-NTSX和JWB-NTSH及JWB亲缘关系比较近,和PPWB的亲缘性较远,此结果和构建的系统分类树分析结果是一致的,所以枣疯病植原体应该被分到16SrDNAV-B组中,为枣疯病植原体的分类提供可靠的分子水平的理论依据。
4结论
近年来,新疆枣树产业不断的发展,枣疯病的研究就显得极其重要。目前我们在新疆南疆发现具有枣疯病症状的植株,本文通过对枣疯病植原体16SrDNA进行PCR扩增检测,并且通过构建其系统分类树和模拟RFLP实验,确定出枣疯病植原体的变异随地区差异性较小,并进一步确定其属于16SrDNAV-B组,为建立更为灵敏准确的枣疯病检测体系建立理论基础。
参考文献
1 CHEN Zi-wen,CHEN Yong-xuan,CHEN Zen-an.Recent advance in the study of Jujube witches broom[J].Journal of Nanjing Agricultural University,1991,14(4):49-55.
2 ZHOU Jun-yi,LIUMeng-jun,HOU Bao-lin.Advances in research on witch-broom disease of Chinese Jujube [J].Journal of Fruit Science,1998,15(4):354-359.
3 LAI Fan,LI Yong,XV Qi-cong,TIAN Guo-zhong.The present status on classification of Phytoplasmas [J].Microbiology,2008,35(2):291-295.
4 TIAN Guo-zhong,ZHANG Xi-jin.Recent advances in Paulownia witches broom disease research [J]. World Forestry Research,1996,2:37-38.
5 MA Bing-gang,NIU Jian-xin,MA Lian-yin,TIAN Xin-li,ZHAO Zong-sheng.Extraction of Korla pear DNA and its RAPD analysis [J].Xinjiang Agricultural Sciences,2001,(01):18-22.
6 Lee I M,Davis R E,Chen T A,Chiykowski L N,Fletcher J,Hiruki C,Schaff D A. A genotype based system for identification and classification of mycoplasma like organisms(MLOs) in the Aster yellows MLO strain cluster[J].Phytopathology,1992,82(9):977-986.
7 LI Yong. Current status and problems of molecular classification in the Phytoplasmas[D].Beijing:Chinese Academy of Forestry,2004.
8 QIN Guo-fu,ZHAO Jun,LIU Liao-wu.Current status and problems of molecular classification in the Phytoplasmas [J].Scientia Silvae Sinicae,2002,38(6):125-136.
9 Lee IM,Gundersen-Rindal D E,Davis R,et al ‘CandidatusPhytoplasma asteris’ , a novel phytoplasma taxon associated with aster yellows and related diseases [J]. Int J Syst Evol Microbiol,2004,54(4):1037-1048.
10 LIU Yong-guang,TIAN Guo-zhong,WANG Jie,LI Xiang-dong,ZHU Xiao-ping,SHU Huai-rui. Molecular identification of Pathogen causing mulberry yellow dwarf disease in Shandong Sericultural areas.Science of Sericulture,2009,35(3):463-471 2/2 首页 上一页 1 2 |