欢迎来到论文网! 识人者智,自知者明,通过生日认识自己! 生日公历:
网站地图 | Tags标签 | RSS
论文网 论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台。lunwenf@yeah.net。
您当前的位置:首页 > 科技论文 > 机电一体化论文

基于MATLAB的BP神经网络在溶解氧浓度控制中的应用

时间:2011-07-16  作者:秩名

论文导读::污水处理系统中,溶解氧的浓度起着至关重要的作用。本文针对污水处理CASS池中溶解氧浓度控制的重要性和控制要求等,提出了用BP神经网络对其控制的方法,并设计BP神经网络控制器。通过对BP网络模型的训练和仿真,得出BP神经网络控制器对溶解氧浓度控制具有高度的精确性和可靠性。最后将此BP网络控制器结合与PLC相结合应用到实际系统中,对溶解氧浓度的控制达到了理想的效果。
论文关键词:MATLAB,BP神经网络,污水处理,溶解氧

 

0、引言

近年来,环境污染日益严重,淡水资源日益匮乏,如何将污水处理后排放或加以利用,已经成为世界各国政府关注的大事。活性污泥法是目前大多数城市污水生活处理厂广泛采用的污水处理工艺,其基本流程包括粗格栅及提升泵房、细格栅及沉砂池、配水计量井、CASS反应池、计量井、接触消毒池等,处理工艺图如图1所示。在曝气作用下机电一体化论文,CASS反应池中的污水得到足够的溶解氧并使存活在活性污泥上的微生物分解可溶性有机物,经过一系列的生化反应,使污水得到净化[1]

BP神经网络

图1 污水处理工艺图

1、控制策略分析与控制器设计

1.1 控制策略分析

CASS反应池中溶解氧浓度的高低直接影响着有机物的去除效率,也就相应的影响了出水水质。如果溶解氧浓度过低,供氧不足,会使微生物代谢活动受影响,微生物净化功能降低,使生化反应不够充分,出水水质达不到标准;如果溶解氧浓度过高,氧的转移效率降低,动力费用增加。曝气池中影响溶解氧浓度的因素众多,主要有进水水质化验值(BOD,COD,TP,TN机电一体化论文,SS)和进水流量等免费论文。所以,在污水处理过程中不同工况下都能够对溶解氧浓度进行快速有效的控制,对整个污水处理过程具有重大的现实意义[2]

由于对溶解氧浓度的控制是一个大时滞、非线性、多变量的系统,溶解氧浓度数学模型难以建立,所以对溶解氧浓度的传统控制方式存在着控制精度不够高,实时性不够好等缺点。基于规则的传统模糊控制虽取得了比传统PID控制方法好的控制效果,但是,由于缺乏自学习能力,不能在线调整控制规则,自适应能力差,使系统的鲁棒性受到限制。神经网络控制是将神经网络在相应的控制系统结构中作为控制器或辨识器,由于神经网络是从微观结构与功能上通过对人脑神经系统的模拟而建立起来的一类模型,具有模拟人的部分智能的特性,使神经控制能对变化的环境具有自适应性,且成为基本上不依赖于数学模型的一类控制机电一体化论文,所以它在控制系统中的应用具有多样性和灵活性。

1.2 BP网络控制器设计

BP网络是一种多层前馈神经网络,由输入层、隐含层和输出层组成。层与层之间采用全互连方式,同一层之间不存在相互连接,隐含层可以有一个或多个[3]。构造一个BP网络需要确定其处理单元――神经元的特性和网络拓扑结构。神经元是神经网络最基本的处理单元,隐含层中的神经元采用S型变换函数,输出层的神经元可采用S型或线性变换函数。图2所示即为一个典型的三层BP网络结构。

BP神经网络

图2 典型三层BP网络结构

设上图BP网络输入层有M个节点,输出层有L个节点,而且隐含层只有一层,具有N个节点。一般情况下N>M>L。设输入层神经节点的输出为ai(i=1,2,……,M);隐含层节点的输出为aj(j=1,2,……,N);输出层神经节点的输出为yk(k=1机电一体化论文,2,……,L);神经网络的输出向量为ym;期望输出向量为yp免费论文。则:

(1)输入层第i个节点的输入为

BP神经网络

式中xi(i=1,2,……,M)为网络的输入,θi为第i个节点的阈值。

(2)隐含层的第j个节点输入为

式中wij和θj分别为隐含层的权值和第j个节点的阈值。

(3)输出层第k个节点的输入为

1.3 BP网络学习算法的步骤

(1)初始化:置所有的加权系数为最小的随机数。

(2)提供训练集:给出顺序赋值的输入向量和期望的输出向量。

(3)基数按实际输出:计算隐含层和输出层各神经元的输出。

(4)计算期望值与实际输出的误差。

(5)调整输出层的加权系数。

(6)调整隐含层的加权系数。

(7)返回步骤(3),直到误差满足要求为止。

2、BP网络控制器的MATLAB实现

2.1 BP网络模型的建立与训练

由于待处理的污水组成成分复杂,对溶解氧浓度的影响并不是一两个因素,根据污水的主要污染物组成的特点,我们选取了最具代表性和普遍意义,具有关键控制作用的几个进水参数,即选取进水的BOD5、COD、SS、TN、TP以及进水流量作为输入层的输入节点,输出节点即为溶解氧浓度。

通常隐含层的数目及隐含层神经元数目决定着神经网络的运算速度、存储空间和收敛性质。太多或太少的隐含层都会导致神经网络的收敛性变差,这是因为过少的隐含层处理单元数目不足以反映输入变量间的交互作用,因而误差较大机电一体化论文,而数目过多,虽然可以达到更小的误差值,但因网络较复杂,从而收敛较慢[6]免费论文。有研究表明,当隐含层为1―2层时,网络的收敛性最佳。本系统采用1层隐含层。

首先确定BP网络训练的样本数据,本文对BP神经网络控制器进行训练和检验的数据,是采用某污水处理厂一个月中每天中午十二点的采样数据,其中5号、10号、15号、20号、25号、30号这6天的数据进行验证网络的输出,其它24天的数据进行对神经网络的训练。

其次建立网络并对网络进行训练。首先将训练数据和检测数据导入到工作空间,生成p1和t向量用来训练网络;生成p2向量和test_target向量,用来通过仿真检测网络的性能。然后通过命令生成一个隐含层包含5个神经元,输出层包含1个神经元的BP网络;第一层传递函数是tansig(),第二层传递函数是线性的,训练函数选取为traingd()。设置好训练次数、误差精度、学习率等参数机电一体化论文,开始训练网络。MATLAB中部分程序代码如下所示:

net = newff(minmax(p1),[5,1],{‘tansig’,’purelin’},’traingd’);%生成一个BP网络

net.trainParam.show= 20; %每隔20次显示一次

net.trainParam.lr= 0.01; %学习率设为0.01

net.trainParam.mc= 0.9; %动量因子设为0.9

net.trainParam.epochs= 100; %最大训练次数设为100

net.trainParam.goal= 1e-2; %训练要求精度设为0.01

[net,tr] = train(net,p1,t); %开始训练网络

网络训练过程如图3所示,从图中可以看到,网络训练在20个步长之后就将误差训练到小于0.01了。

图3 网络的训练过程

2.2 仿真结果分析

网络训练完毕,然后通过仿真验证,验证之后得出的实际值、网络输出值和误差的数据对比如图4所示。从图中我们可以看到,网络的仿真检测输出和实际输出之间的误差很小,说明设计的BP网络控制器性能稳定,能够满足实际应用的性能要求,对溶解氧浓度的控制能够起到比较精确的控制效果。

图4 实际值、网络输出值和误差值的对比

3、控制系统实现

3.1 硬件系统设计

根据工艺要求,甘肃靖远污水处理厂采用三个控制站,针对CASS池部分的控制站使用的PLC是AB系列的Logix 5561;模拟量输入模块为1756-IF16,采集现场BOD5、COD、SS、TN、TP以及进水流量等传感器数据;模拟量输出模块为1756-OF8,输出给定鼓风机变频器的频率大小。

3.2 软件系统设计

一般的污水处理控制系统都是采用PLC和上位组态软件来进行控制的,而PLC和上位组态软件编程方式的局限性,使得它们不能进行神经网络控制算法的编写机电一体化论文,只能实现一些简单的控制方法;MATLAB能很容易的实现神经网络的算法编写,但是不能够进行组态免费论文。如何将MATLAB和PLC结合起来实现BP神经网络对溶解氧浓度的控制是本系统的关键所在,这就要用到OPC协议来实现上位机中的MATLAB与下位机PLC之间的数据交换,才能将MATLAB中设计好的BP神经网络控制器用到系统中。在本系统中,我们将PLC采集来的BOD5、COD、SS、TN、TP以及进水流量等现场数据,通过OPC协议送入到MATLAB工作空间,经过MATLAB中的BP神经网络控制器处理,得出鼓风机变频器需要的频率大小,然后将结果再通过OPC协议送回到PLC,经过模拟量输出给到变频器,通过调节鼓风机频率的大小来调节鼓风量的大小,最终调节CASS池中溶解氧浓度的大小。PLC与MATLAB通过OPC协议进行数据交换的部分m程序如下所示:

da = opcda (‘localhost’,‘RSLinx OPC Server’); %建立OPC数据访问对象模型

connect(da); %连接到服务器

grp = addgroup (da); %建立组对象模型

item1 = additem (grp,‘[plc]temp1’); %建立数据项模型

r = read (item1); %读item1数据结构,并把值赋给data

data = r.value;

item2 = additem (grp,’[plc]temp2’);

write (item2,0); %向item2中写入数据0

disconnect (da); %断开OPC连接

delet (da); %删除OPC数据访问对象

3.3 上位组态监控设计

本控制系统上位组态软件采用组态王。在组态王设计的监控操作画面中,可以实现手动/自动切换、给定值输入、参数输入、数据显示、画面切换等功能,使操作人员很容易的对控制系统进行操作和管理。另外,利用组态王还可以完成监视器显示所需的现场设备监控画面机电一体化论文,如系统状态图、硬件报警、工艺报警、模拟量趋势、对比趋势、操作日志、报表输出等,可直观、动态地显示出现场各部位重要参数的变化。图5所示为CASS池监控画面:

图5CASS池组态监控画面

4、结束语

本文通过对污水处理CASS池中溶解氧浓度控制要求的深入分析,对比阐述了传统控制方法的局限性以及BP神经网络的优越性,通过在MATLAB环境下设计BP神经网络控制器,并对其进行训练仿真,得出合理的BP网络控制器。最后通过OPC协议进行MATLAB与PLC之间的数据交换,将MATLAB环境下的BP神经网络运用到实际的污水处理控制系统中,通过实际运行观察,控制效果非常理想,降低了成本,提高了效率。


参考文献:
[1]胡玉玲,曹建国,乔俊飞.活性污泥污水处理系统的模糊神经网络控制[J].系统仿真学报,
2005,17(10):2541-2544.
 

 

查看相关论文专题
加入收藏  打印本文
上一篇论文:利用SPC技术对零件加工精度的控制_控制SPC技术
下一篇论文:基于ZigBee的智能家居系统设计_远程监控
科技论文分类
科技小论文 数学建模论文
数学论文 节能减排论文
数学小论文 低碳生活论文
物理论文 建筑工程论文
网站设计论文 农业论文
图书情报 环境保护论文
计算机论文 化学论文
机电一体化论文 生物论文
网络安全论文 机械论文
水利论文 地质论文
交通论文
相关机电一体化论文
最新机电一体化论文
读者推荐的机电一体化论文