(12)
以h1代替h,其余数值不变,重新利用Olive-Pharr方法和Ma方法计算硬度和弹性模量,并和原来的结果进行比较,就可定量分析出仪器柔度标定误差对两种压入测试方法的精度影响。图3和图4分别显示两种材料压入载荷为100N时仪器柔度标定无误差和+10%误差下的载荷—压入深度曲线。

图3 σy=35MPa材料的压入载荷-深度曲线
Fig.3 Load-depth curves for thematerial of σy=35MPa

图4 σy=560MPa材料的压入载荷-深度曲线
Fig.4 Load-depth curves for the material of σy =560MPa
表1-表8分别列出了两种材料在不同压入载荷和不同压入深度下的计算结果。表中hm1和E1分别为计入仪器柔度标定误差后的最大压入深度和材料杨氏模量。表中比较了仪器柔度标定误差为-10%时杨氏模量的变化情况。为便于分析,将两种杨氏模量和标准值70Gpa也进行了比较。
表1 σy=35MPa不同压入载荷Olive-Pharr方法计算结果
Table 1 The values obtained by Oliver-Pharr method for the material of σy=35MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
H
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.5
|
8.675
|
8.670
|
0.276
|
92.45
|
97.38
|
32.1%
|
39.1%
|
5.3%
|
5
|
27.43
|
27.38
|
0.276
|
92.45
|
110.06
|
32.1%
|
57.2%
|
19.0%
|
50
|
86.75
|
86.25
|
0.276
|
92.45
|
186.80
|
32.1%
|
166.9%
|
102.1%
|
100
|
122.68
|
121.68
|
0.276
|
92.45
|
322.64
|
32.1%
|
360.9%
|
249.0%
|
表2 σy=560MPa不同压入载荷Olive-Pharr方法计算结果
Table 2 The values obtained by Oliver-Pharr method for the material of σy=560MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
H
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.5
|
3.164
|
3.159
|
2.42
|
84.27
|
85.64
|
20.4%
|
22.3%
|
1.6%
|
5
|
10.01
|
9.96
|
2.42
|
84.27
|
88.76
|
20.4%
|
26.8%
|
5.3%
|
50
|
31.64
|
31.14
|
2.42
|
84.27
|
100.25
|
20.4%
|
43.2%
|
19.0%
|
100
|
44.75
|
43.75
|
2.42
|
84.27
|
108.74
|
20.4%
|
55.3%
|
29.0%
|
表3 σy=35MPa不同压入载荷Ma方法计算结果
Table 3 The values obtained by Ma method for the material of σy=35MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
Hn
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.5
|
8.675
|
8.670
|
0.271
|
80.95
|
84.92
|
15.6%
|
21.3%
|
4.9%
|
5
|
27.43
|
27.38
|
0.271
|
81.25
|
95.02
|
16.1%
|
35.7%
|
17.0%
|
50
|
86.75
|
86.25
|
0.271
|
80.90
|
152.70
|
15.6%
|
118.1%
|
88.8%
|
100
|
122.68
|
121.68
|
0.271
|
80.98
|
244.44
|
15.7%
|
249.2%
|
201.9%
|
表4 σy=560MPa不同压入载荷Ma方法计算结果
Table 4 The values obtained by Ma method for the material of σy=560MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
Hn
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.5
|
3.164
|
3.159
|
2.04
|
78.88
|
79.97
|
12.7%
|
14.2%
|
1.4%
|
5
|
10.01
|
9.96
|
2.04
|
78.88
|
82.46
|
12.7%
|
17.8%
|
4.5%
|
50
|
31.64
|
31.14
|
2.04
|
78.88
|
91.49
|
12.7%
|
31.1%
|
16.0%
|
100
|
44.75
|
43.75
|
2.04
|
78.88
|
98.05
|
12.7%
|
40.1%
|
24.3%
|
表5 σy=35MPa不同压入深度Olive-Pharr方法计算结果
Table 5 The values obtained by Oliver-Pharr method for the material of σy=35MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
H
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.0066
|
1
|
0.9999
|
0.276
|
92.0
|
92.63
|
31.4%
|
32.3%
|
0.7%
|
0.166
|
5
|
4.998
|
0.276
|
92.45
|
95.20
|
32.1%
|
36.0%
|
3.0%
|
16.61
|
50
|
49.83
|
0.276
|
91.25
|
130.47
|
30.4%
|
86.4%
|
43.0%
|
66.44
|
100
|
99.34
|
0.276
|
92.0
|
218.84
|
31.4%
|
212.6%
|
137.9%
|
表6 σy=560MPa不同压入深度Olive-Pharr方法计算结果
Table6 The values obtained by Oliver-Pharr method for the material of σy=560MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
H
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.0499
|
1
|
0.9995
|
2.42
|
84.27
|
84.70
|
20.4%
|
21.0%
|
0.5%
|
1.249
|
5
|
4.988
|
2.42
|
84.27
|
86.46
|
20.4%
|
23.5%
|
2.6%
|
124.86
|
50
|
48.75
|
2.42
|
84.27
|
112.55
|
20.4%
|
60.8%
|
33.6%
|
499.43
|
100
|
95.01
|
2.42
|
84.27
|
168.20
|
20.4%
|
140.3%
|
99.6%
|
表7 σy=35MPa不同压入深度Ma方法计算结果
Table 7 The values obtained by Ma method for the material of σy=35MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
Hn
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.0066
|
1
|
0.9999
|
0.271
|
80.91
|
81.41
|
15.6%
|
16.3%
|
0.6%
|
0.166
|
5
|
4.998
|
0.271
|
80.95
|
83.18
|
15.6%
|
18.8%
|
2.8%
|
16.61
|
50
|
49.83
|
0.271
|
80.93
|
110.94
|
15.6%
|
58.5%
|
37.1%
|
66.44
|
100
|
99.34
|
0.271
|
80.88
|
177.16
|
15.5%
|
153.1%
|
119.0%
|
表8 σy=560MPa不同压入深度Ma方法计算结果
Table 8 The values obtained by Ma method for the material of σy=560MPa
Pm
/N
|
hm
/μm
|
hm1
/μm
|
Hn
/GPa
|
E
/GPa
|
E1
/GPa
|
(E-70)
/70
|
(E1-70)
/70
|
(E1-E)
/E
|
0.0499
|
1
|
0.9995
|
2.04
|
78.88
|
79.22
|
12.7%
|
13.2%
|
0.4%
|
1.249
|
5
|
4.988
|
2.04
|
78.88
|
80.63
|
12.7%
|
15.2%
|
2.2%
|
124.86
|
50
|
48.75
|
2.04
|
78.88
|
100.96
|
12.7%
|
44.2%
|
28.0%
|
499.43
|
100
|
95.01
|
2.04
|
78.88
|
141.52
|
12.7%
|
102.2%
|
79.4%
|
由以上数值计算结果可以看出,当材料较软(σy=35Mpa,H=0.276Gpa)、压入载荷达到或超过50N时,10%的仪器柔度标定误差可导致测得杨氏模量超过100%的误差。当材料硬度提高时,仪器柔度的影响会显著降低,但依然不可忽略,当材料σy=560Mpa、H=2.42Gpa,压入载荷达到或超过50N时硬度,10%的仪器柔度标定误差可导致杨氏模量超过19%的误差。在同一压入深度下,仪器柔度标定误差对硬材料和软材料影响差别不大,这是由于压入同一深度时硬材料需要的压入载荷更大。同时由以上数值计算结果可以看出,Olive-Pharr方法计算得出的结果比Ma方法误差更大,对仪器柔度的标定误差更敏感,这可能和接触刚度S对数据比较敏感有关。
4 结论
由以上分析,可得出以下结论:
1)仪器柔度的标定精度直接影响压入测试结果的准确度,当材料较软且压入载荷较大时尤为明显。
2)对同一材料,压入载荷越大,由仪器柔度标定误差引入的压入测试结果误差越大。
3)在同一压入深度下,针对不同材料,由仪器柔度标定误差引入的压入测试结果误差差别不大。
4)就测试方法而言,利用Ma方法测得杨氏模量比Olive-Pharr方法精度更高,对仪器柔度敏感性更低。
参考文献:
[1]ISO 14577. MetallicMaterials-Instrumented Indentation Test for Hardness and Materials Parameter[S].
[2]Oliver W C, Pharr G M. An Improved Technique for Determining Hardness and Elastic-modulus Using Load andDisplacement Sensing Indentation Experiments [J]. Journal of Materials Research,1992, 7(6): 1564–1583.
[3]Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advancesin understanding and refinements to methodology [J]. J. Mater. Res. , 2004 ,19(1);3-20.
[4]Vliet K J, Prchlik L,Smith J F. Direct measurement of indentation frame compliance[J]. J Mater Res,2004, 19(1):325~331.
[5]Sun Y, Zheng S, Bell T, etal. Indenter tip and load frame compliance calibration using nanoindentationloading curves[J]. Philosophical Magazine Letters, 1999, 79(9): 649~658.
[6]Li Z, Herrmann K, PohlenzF. A Comparative Approach for Calibration of the Depth Measuring Ssystem in a NanoindentationInstrument[J]. Measurement, 2006, 39(6): 547-552.
[7]Crawford G A,Nikhilesh C, Mark K, et al. Effect of Mounting Material Compliance onNanoindentation Response of Metallic Materials[J]. Advanced engineeringmaterials, 2009, 11(1—2):45-51.
[8]Ullner Ch, Reimann E,Kohlhoff H, et al. Effect and Measurement of the Machine Compliance in theMacro Range of Iinstrumented Indentation [J].Measurement, 2010, 43(3): 216-212.
[9]Ma D J, Ong C W, Zhang TH. An improved energy method for determining Young's modulus by instrumentedindentation using a Berkovich tip[J]. Journal of Materials Research, 2008, 23(8):2106~2115.
[10]马德军.材料力学性能仪器化压入测试原理[M]. 北京:国防工业出版社, 2010.( Ma D J. Principles of measuring mechanical propertiesof materials by instrumented indentation[M]. Beijing: National defense industrypress, 2010 (in Chinese).)
[11]周向阳,蒋庄德,王海容.压入测试仪柔度标定方法研究[J].仪器仪表学报,2007,28(1):85-89.(Zhou X Y, Jiang Z D,Wang H R. Study on the calibration methods of machinecompliance for depth-sensing indentation instrument[J]. Chinese Journal ofScientific Instrument, 2007,28(1):85-89 (in Chinese).)
[12]Pelleetier H,Krier J,Cornet,et al. Limits of using bilinear stress-strain curve forfinite element modeling of nanoindentatio response on buik materials [J]. ThinSolid Films, 2000, 379(1): 147-155
2/2 首页 上一页 1 2 |