欢迎来到论文网! 识人者智,自知者明,通过生日认识自己! 生日公历:
网站地图 | Tags标签 | RSS
论文网 论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台。lunwenf@yeah.net。
您当前的位置:首页 > 科技论文 > 节能减排论文

锰掺杂对0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3陶瓷的电性能的影响

时间:2011-04-24  作者:秩名

论文导读:采用传统陶瓷制备技术制备了新型的0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3体系压电陶瓷,系统研究了该体系陶瓷的电学性能。研究结果表明,在1140℃、4h的烧结条件下,当锰的掺杂量为0.005时该体系陶瓷性能达到最佳,其中压电常数d33为112pC/N,机电耦合系数kp为25%,介电常数er为497,介质损耗tanδ为3%,剩余极化强度Pr=11.2μC/cm2,矫顽场强Ec=1.73kV/mm。
关键词:压电陶瓷,掺杂,BNT,BKT
 

压电陶瓷的发现和发展距今已有50余年的历史,尤其是近20年来,压电陶瓷和压电器件的原材料有了很大的发展。压电陶瓷在信息、航天、激光和生物等诸多高新科技领域的应用甚广,这些应用主要是与这类材料具有稳定的化学特性、优异的物理性能、易于制备成各种形状和具有任意极化方向的特性紧密相连[1-3]。

目前,大规模使用的压电陶瓷仍然是传统的以PZT为基的多元系压电陶瓷,且在电子学、微电子学等诸多高科技领域得到广泛的应用,但这类陶瓷中的PbO(或Pb3O4)的含量约占原材料总重量的70%,难以制备致密陶瓷,且凭借当今的科技水平还不能使沉积在地表或游离于空气中的铅完全回收再利用,这将使得在制备、使用及废弃后的处理过程中,都会给人类和生态环境带来严重危害。随着近来各国环保战略的加强,无铅压电陶瓷的研发取得了很大的成绩,出现了很多具有实用前景的陶瓷体系,尤其钛酸铋钠系压电陶瓷更是受到当前各国科研工作者的青睐[4-9]。

然而,从近年来的研究进展可以看出,无铅压电陶瓷不可能马上替代铅基压电陶瓷在电子元器件的原材料使用上的主导地位,只有逐渐改善才是更为务实。因此,本论文根据ABO3钙钛矿型陶瓷的多元系复合原则,采用传统陶瓷制备技术和电子陶瓷工业用原料,制备了新型0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3体系压电陶瓷,并研究了该体系压电陶瓷的压电、介电、铁电性能。论文检测。

1.实验

本着实用化的目的,采用传统的陶瓷制备工艺技术,以Bi2O3、Na2CO3、K2CO3、TiO2为起始原料,根据0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3(简记为BNT-BKT)陶瓷体系的化学计量比进行配料,其中x分别为0,0.005,0.01,0.03,0.05。首先将原料混合物振动球磨12h,充分混合、粉碎后,然后在860~900°C下,经3h的预烧合成陶瓷粉体;合成后的陶瓷粉末充分研磨并过60目分样筛后,加入适量的粘结剂,造粒得到流动性好的颗粒;在一定压力下干压成型,获得厚度为1.0~1.5 mm、直径为 12.0 mm的生坯片;并在1140°C下、烧结4h得到致密的陶瓷片。将清洗好的陶瓷片用真空溅射仪镀上银电极,在硅油温度为80°C~100°C、极化直流电压为3.5 kV/mm~4.5 kV /mm的条件下极化20~30min,放置24h后,测试各项性能。用ZJ-3A准静态测量仪(中国科学院声学研究所)测量d33;采用HP4294A阻抗分析仪测量陶瓷样品的谐振频率、反谐振频率、谐振阻抗和电容,然后计算出陶瓷的机电耦合系数kp;用LCR数字电桥(TH2816A)在常温下测得1kHz时陶瓷样品的介电常数εr和介电损耗tanδ;采用RadiantPrecision Workstation铁电测试系统测试陶瓷样品的电滞回线。

2. 结果与讨论

2.1锰掺杂对压电性能的影响

图1 BNT-BKT+xmolMnO2陶瓷的压电常数d33和平面机电耦合系数kp与组分的关系图

图1为锰掺杂对BNT-BKT体系陶瓷的压电常数d33和平面机电耦合系数kp的关系图。不难发现,d33在掺杂量x=0.005时出现峰值,之后随着x值的增加而减小。平面机电耦合系数kP随着锰掺杂量x值的增大而增大,在x=0.005时kP达到最大值,之后又逐渐减小。论文检测。掺杂少量的锰提高了材料的压电常数,掺杂量进一步增加,压电常数出现了明显的下降。这是因为掺锰引起氧空位,一方面起到了烧结促进剂的作用,有利于晶粒的长大,然而压电常数受晶粒大小的影响随晶粒尺寸的增大而增大,所以可以提高陶瓷材料的d33值;另一方面,氧空位也阻碍了铁电畴壁的运动,又会降低d33的值。锰掺杂量较少时,晶粒尺寸长大占据主要地位,d33值随锰含量的增加而增大;而当锰含量进一步增加,氧空位增多,对铁电畴壁的阻碍作用增强,d33值随之减小,在这两种作用下,陶瓷材料的压电性能表现出随锰含量的增加先增大后减小的规律。

2.2锰掺杂对介电性能的影响

图2 BNT-BKT+xmolMnO2陶瓷的介电常数、介电损耗与组分的关系图

图2为BNT-BKT陶瓷的介电常数和介电损耗与组分的关系图。从图2可以看出:陶瓷的介电常数εr随着锰掺杂量x的增加而不断减小,当x=0.01时达到最小,之后随着锰的掺杂量的增加而逐渐增加。另外,图2也反映了锰掺杂量x和介电损耗tanδ之间的关系,由图中可以看出,介电损耗tanδ在x=0.005时最小,在出现峰值之后随着x的增加,介电损耗tanδ也不断增大。说明在本实验中,锰掺杂量为0.005时陶瓷的介电性能最好。综上所述,可以得到锰掺杂对介电性能影响的原因是当x≤0.005时,锰呈现硬性掺杂的作用,当x≥0.005时,由于晶粒过分长大,气孔增多,陶瓷不致密,因此致使样品的介电性能降低。

2.3锰掺杂对铁电性能的影响

图3 BNT-BKT+xmolMnO2陶瓷在室温下的电滞回线

图4 BNT-BKT+xmolMnO2陶瓷的剩余极化强度Pr和矫顽场强Ec 与组分的关系图

图3为BNT-BKT陶瓷在室温下的饱和电滞回线图,通常,饱和电滞回线是为了展示该体系陶瓷优良的铁电性能。从图3可以看出:在一个宽的组分范围内,获得了饱和的电滞回线展示了铁电性能。图4为锰的掺杂量对剩余极化强度Pr和矫顽场强Ec的影响关系图。不难发现,Pr随着锰掺杂量的增加而减小。锰掺杂使样品的剩余极化强度明显下降,体现了明显的受主掺杂的特点。论文检测。矫顽场强Ec在锰掺杂量x=0.03时达到最值2.43kV/mm,此时的剩余极化强度为4.54μC/cm2,之后随着锰的掺杂量的增大而减小,表明添加锰可以降低矫顽场强,使压电性能得以充分体现。

3.结论

(1) 对0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3无铅压电陶瓷锰掺杂的改性研究表明:掺杂为受主掺杂的特性,锰离子主要以+2、+3价对材料进行硬性取代,产生氧空位,使陶瓷变“硬”,导致介电常数d33变小,机电耦合系数kp变小,剩余极化强度Pr显著降低,机械品质因数Qm有所增加。(2) 本实验利用固态氧化物为原料,采用传统的固相反应法进行陶瓷粉体的制备,并采用压制成形工艺制备出0.82(Bi0.5Na0.5)TiO3-0.18(Bi0.5K0.5)TiO3陶瓷,进行锰的掺杂实验,实验中不断研究其新的掺杂量,以期达到最优配比。从而得出在锰掺杂量占陶瓷总物质的量的0.005时,陶瓷的压电、介电、铁电性能较优。


参考文献:
[1] 肖定全. 信息材料(第十章)[M].天津: 天津大学出版社, 2000.
[2]肖定全. 万征. 环境协调型铁电压电陶瓷[J]. 压电与声光, 1999, 21(5): 363-366.
[3] 赁敦敏, 肖定全, 朱建国, 等. 铌酸盐系无铅压电陶瓷的研究与进展[J]. 功能材料, 2003, 34(6): 615-618.
[4] Lee W C, Huang C Y, TsaoL K, et al. Chemical composition and tolerance factor at the morphotropic phaseboundary in (Bi0.5Na0.5)TiO3-basedpiezoelectric ceramics. J. Euro. Ceram. Soc., 2009, 29: 1443.
[5] Zhou C R, Liu X Y, Li W Z, et al. Structure and piezoelectric propertiesof Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BiFeO3lead-free piezoelectric ceramics. Mater. Chem. Phys., 2009, 114: 832.
[6]Tian H Y, Wang D Y, Lin D M, et al. Diffusion phase transition anddielectric characteristics of Bi0.5Na0.5TiO3-Ba(Hf,Ti)O3 lead-free ceramics. Solid State Commun, 2007, 142: 10.
[7] Xu Q, Huang Y H, Chen M,et al. Effect of bismuth deficiency on structure and electrical properties of(Na0.5Bi0.5)0.93Ba0.07TiO3ceramics. J. Phys. Chem. Solids, 2008, 69: 1996.
[8] Chen M, Xu Q, Kim B H,et al. Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3piezoelectric ceramics. J. Euro. Ceram. Soc., 2008, 28: 843.
[9]Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics oflead-free Bi0.5(Na0.84K0.16)0.5TiO3ceramics substituted with Sr. Mater. Lett., 2004, 58: 3831.
 

 

查看相关论文专题
加入收藏  打印本文
上一篇论文:煤矿机电设备安全管理及维护要点分析
下一篇论文:某机交流电源故障分析(图文)
科技论文分类
科技小论文 数学建模论文
数学论文 节能减排论文
数学小论文 低碳生活论文
物理论文 建筑工程论文
网站设计论文 农业论文
图书情报 环境保护论文
计算机论文 化学论文
机电一体化论文 生物论文
网络安全论文 机械论文
水利论文 地质论文
交通论文
相关节能减排论文
最新节能减排论文
读者推荐的节能减排论文