因此,在实际的CNC系统中,常常采用粗、精插补相结合的方法,即把插补功能氛围软件插补和硬件插补两部分,计算机控制软件把刀具轨迹分为若干段,而硬件电路再在段的起点和终点之间进行数据的“密化”,使刀具轨迹在允许的误差之内,即软件实现初插补,硬件实现精插补。下面以三坐标直线插补为例予以说明。
5、输出
输出程序的功能是:
(1) 进行伺服控制。如上所述。
(2) 当进给脉冲改变方向时,要进行反向间隙补偿处理。若某一轴由正向变成负向运动,则在反向前输出Q个正向脉冲;反之,若由负向变成正向运动,则在反向前输出Q个负向脉冲(Q为反向间隙值,可由程序预置)。
(3) 进行丝杠螺距补偿。当系统具有绝对零点时,软件可显示刀具在任意位置上的绝对坐标值。
(4) M,S,T等辅助功能的输出。
6、管理与诊断软件
一般CNC(MNC)系统中的管理软件只涉及两项,即CPU管理和外部设备管理。由于数控机床的加工是以单个零件为对象的,一个零件程序可以分成若干程序段。每个程序段的执行又分成数据分析、运算、走刀控制、其他动作的控制等步骤。通常情况下,这些加工步骤之间多是顺序关系,因此实际的过程就是这些预定步骤的反复执行。在实际系统中,通常多是采用一个主程序将整个加工过程串起来,主控程序对输入的数据分析判断后,转入相应的子程序处理,处理完毕后再返回对数据的分析、判断、运算……。在主控程序空闲时(如延时),可以安排CPU执行预防性诊断程序,或对尚未执行程序段的输入数据进行预处理等。
在CNC系统中,中断处理部分是重点,工作量也比较大。因为大部分实时性较强的控制步骤如插补运算、速度控制、故障处理等都要由中断处理来完成。有的机床将行程超程和报警、阅读机请求、插补等分为多级中断,根据其优先级决定响应的次序。有的机床则只设一级中断,只是在中断请求同时存在时,才用硬件排队或软件询问的方法来定一个顺序。
能够方便地设置各种诊断程序也是CNC和MNC系统的特点之一。有了较完善的诊断程序可以防止故障的发生或扩大。在故障出现后可以迅速查明故障的类型和部位,减少故障停机时间。各种CNC(MNC)系统设置诊断程序的情况差别也很大。诊断程序可以包括在系统运行过程中进行检查和诊断;也可以作为服务性程序,在系统运行前或故障停机后进行诊断,查找故障的部位。国外一些公司的CNC系统还可以进行通信(海外)诊断,由通信诊断中心指示系统或操作者进行某些试运行,以查找故障隐患或故障部位。
结束语
以上内容浅谈了计算机数控系统的结构特点,以及构成。计算机数控系统是集高、精、尖技术于一体,集机、电、光、液于一身的高技术产物。具有加工精度高、加工质量稳定可靠、生产效率高、适应性强、灵活性好等众多优点,在各个行业受到广泛欢迎,在使用方面,也是越来越受到重视。
参考文献
1.刘跃南主编.机床计算机数控及其应用.北京:机械工业出版社,2001.6
2.熊熙主编.数控加工与计算机辅助制造及实训指导.北京:中国人民大学出版社,2000.9
2/2 首页 上一页 1 2 |