B反应器第一级缺氧区去除NH-N的能力较弱,进水中NH-N主要在第二级的好氧区中被去除,水力停留时间为4h。在三个阶段运行过程中,反应器B对氨氮的平均去除率都稳定在80%以上,具体情况如图5所示。在三个阶段的运行中,系统出水NH-N平均浓度稳定在3.6-5.2mg/L的范围内,并且波动较小,与A反应器相比,B反应器在进水负荷发生变化的三个运行阶段中,其对NH-N的去除一直保持在较高的水平。B反应器缺氧/好氧两级接触氧化工艺在整个运行过程中(不包含启动期)对NH-N的平均去除率为83%,比单级好氧接触氧化工艺高出51%。

图5.缺氧/好氧两级接触氧化工艺对NH-N的去除情况
Fig5.TheremovalofNH-NbyAnoxic/Aerobictwostepcontactoxidationprocess
反应器A在运行过程中,发生较大变化的参数主要有温度,进水COD和NH-N负荷等要素。其中温度的变化比较缓慢,而且在整个运行过程中温度是逐渐上升的,不会对NH-N的去除产生抑制作用,根据反应器B在运行过程中始终保持对NH-N的高降解率可以证明这点,另外也说明在本研究范围内的NH-N浓度负荷的增加没有对NH-N的去除产生明显抑制作用,Kim等人的研究也证实了这点。因此,反应器A在运行过程中发生的对NH-N降解率下降的现象只可能是COD负荷的增加引起的。Jokela等利用单级生物接触氧化工艺(SBCP)处理垃圾填埋场渗滤液的实验研究中也发现了类似现象。进水正常情况下工艺对NH-N的去除率高达90%以上,而当进水中BOD浓度发生异常突然增高时,NH-N的去除率急剧下降,BOD上升导致生物膜系统中异养细菌对自养的硝化细菌产生抑制作用。
COD及BOD浓度等有机污染物负荷对生物膜硝化能力的抑制作用是一个长期的过程。根据Okabe等利用分子生物学手段对生物膜结构的研究,当好氧生物膜工艺进水中有机物浓度的增加时,有机物异养降解细菌过度繁殖,填料上附着的生物膜厚度不断增加,硝化细菌被包裹在生物膜内部。在硝化潜力实验中测得的单位质量填料上生物膜的量也表明,A反应器中填料上的生物膜量明显高于B反应器中的填料,镜检也反映了A反应器中填料表明生物膜更厚。生物膜厚度增加,DO和NH-N、碳源等营养物质的传质阻力也大大增加,硝化细菌难以有效利用。而处于生物膜外围的异养有机物降解细菌对DO和营养物的竞争都处于优势地位,将会严重抑制生物膜内部氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的活力。
反应器B的缺氧/好氧两级接触氧化工艺中,缺氧段去除了78%以上的COD及25%以下的NH-N,好氧段进水有机物浓度大大降低,但NH-N浓度仍然较高。Terada及王文斌等人的研究证明,这种营养环境能够抑制生物膜中异养微生物的繁殖,而有利于自养的AOB和NOB细菌的生长。异养微生物生长速度被抑制,接触氧化工艺的生物膜厚度得到有效控制,生物膜内的AOB和NOB细菌能够更好地获取水体中的NH-N、DO以及其它营养物质,使其数量增加,生物膜总体的硝化活性也得到增强。
反应器B在三个阶段的运行过程中,进水COD浓度不断增大,但由于缺氧区对COD的高效去除,缺氧区的出水中有机物浓度始终维持在较低的浓度,这样就不会对好氧区生物膜中的硝化细菌的生长产生抑制作用,好氧区生物膜对NH-N的去除率始终维持在较高的水平。增加前置缺氧区的接触氧化工艺能够更快速有效地去除模拟河流废水中较高浓度的NH-N。
2.3两种接触氧化工艺对TN的去除情况分析
生物接触氧化氧化工艺在整个运行过程中对TN都保持一定的去除率,期间进出水与去除率变化如表4中所示。
表3两套接触接触氧化工艺进出水TN变化情况
Table3TheremovalofTNbybothbiologicalcontactoxidationprocess
项目
|
运行阶段
|
日期
|
取样数
|
平均水温/℃
|
进水平均浓度/mg·L
|
出水平均浓度/mg·L
|
平均去除率/%
|
反应器A
TN
|
启动期
|
1-21天
|
6
|
18.1
|
33.587 (2.8)
|
24.262 (4.7)
|
26.9
|
第一阶段
|
22-75天
|
12
|
20.1
|
25.002 (2.8)
|
16.753 (2.4)
|
32.6
|
第二阶段
|
76-124天
|
15
|
21.7
|
35.406 (4.4)
|
26.522 (5.9)
|
25.3
|
第三阶段
|
125-184天
|
14
|
26.4
|
41.344 (4.3)
|
27.092 (4.7)
|
34.1
|
|
平均
|
|
|
33.835
|
23.657
|
30.7
|
反应器B
TN
|
启动期
|
1-21天
|
6
|
18.1
|
33.587 (2.8)
|
17.282 (3.0)
|
48.1
|
第一阶段
|
22-75天
|
12
|
20.1
|
25.002 (2.8)
|
14.456 (2.4)
|
41.5
|
第二阶段
|
76-124天
|
15
|
21.7
|
35.406 (4.4)
|
15.615 (4.9)
|
56.1
|
第三阶段
|
125-184天
|
14
|
26.4
|
41.344 (4.3)
|
17.503(3.3)
|
57.3
|
|
平均
|
|
|
33.835
|
16.214
|
51.6
|
a括号内为标准偏差
|
|
|
|
|
|
|
|
|
|
|
反应器A对TN的去除率始终维持在30%左右,反应器B对TN的平均去除率为50%左右。单级生物膜接触氧化工艺对NH-N去除能力较弱,大量的TN仍然以NH-N形式存在。胡绍伟等利用膜曝气生物膜反应器处理人工合成废水的过程中,当进水有机负荷过高,导致载体上微生物增长过量时,也导致系统对TN的去除率明显下降,这与本研究得出的结果基本一致。
在两级接触氧化生工艺中,大部分NH-N都能被降解为硝酸盐,但由于缺氧区对有机物的大量消耗,不能为后续的反硝化细菌提供足够的碳源,反硝化作用难以进行,出水中NO-N浓度仍然较高,其对TN的去除率也始终维持在40%-55%的偏低水平上,而随着COD负荷的提升,TN的去除率在第二和第三阶段较之前都有部分上升。Li等人研究生物接触氧化工艺处理滇池流域河流废水时也发现当进水中COD浓度短时间内出现大幅度下降时,反硝化作用无法有效进行,TN去除率会相应大幅度降低。 3/4 首页 上一页 1 2 3 4 下一页 尾页 |