欢迎来到论文网! 识人者智,自知者明,通过生日认识自己! 生日公历:
网站地图 | Tags标签 | RSS
论文网 论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台。lunwenf@yeah.net。
您当前的位置:首页 > 科技论文 > 生物论文

作物抗冻基因及生理研究进展_生理生化变化-论文网

时间:2015-01-08  作者:刘建芳,周瑞莲,赵梅,钟绪生
将SOD基因转入紫花苜蓿提高了SOD活性增加耐冻性。在冰冻解冻循环中SOD活性高于春小麦,是因为冬小麦抗冻性高于春小麦。

3.5甜菜碱与作物抗冻性

甜菜碱(Betains)是重要的渗透调节物质,它是一种季胺类化合物,不仅在植物受到低温胁迫时在细胞内积累以降低渗透势,还能作为一种保护物质维持生物大分子的结构和完整性,维持其正常的生理功能。低温胁迫条件下作物的生长发育具有如下保护作用:1.维持低温条件下酶的活性;2.通过保持光系统II复合体蛋白的稳定性来保持低温胁迫下光系统的活性。对大麦冬、春2种类型近等基因系在冷适应过程中的甜菜碱积累情况研究表明,甜菜碱水平随冷处理时间的延长而增加,且不同叶位间存在明显差异,新生叶甜菜碱的积累量显著高于老叶片,其积累量随胁迫时间延长而增加的趋势明显,老叶片不仅积累少,对胁迫时间的延长也基本没有反应。

4展望

1农作物抗寒性在生理生化方面的表现,最终由体内基因表达来控制,所以基因方面的研究有利于从根本上改善农作物的抗寒性。在选择外源基因时,应考虑外源基因是否与植物内源基因相互协调,一般以导入与植物同源性强的基因为佳,同时也应注意解决转基因作物沉默的问题。CBFs基因是受低温诱导的,但其诱导机制还不太清楚,有待进一步研究。

2AFPs蛋白在植物抗冻中其重要作用,作用机制和其调节信号途径尚不清楚,有待进一步探讨。如何从植物中分离出更多的、活性更高的AFP,并通过遗传转化将其导入抗寒性弱或不抗寒植物中进而获得抗寒性强的转基因植株,将是今后植物抗寒性基因工程研究的主要内容之一。目前,在抗冻基因工程方面已从鱼类抗冻基因途、脂肪酸去饱和代谢关键酶基因途径、超氧物歧化酶基因途径、糖类基因途径4个方面取得了一定的进展,其潜在的应用前景是不言而喻的。随着温室效应的增强,暖冬出现的频率越来越高,这一气候变化对植物和农业生态系统的影响还不能确定,这些内容有待于今后深入研究。

参考文献
1 利容千, 王建波. 植物逆境细胞及生理学[M]. 武汉: 武汉大学出版社. 2002:140-141.
2 LIN S Z, ZHANG Z Y, LIN Y Z. Antifreeze proteins and molecular genetic improvement in freezing resistance of plants[J]. Journal of Plant Physiology, 2004, 30(3): 251-260.
3 STEPONKUS P L. UEUMUR A M. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 1998, 95(24): 14570-14575.
4 UEMURA M, GILMOUR S J., THOMASHOW M F. Effects of COR6.6 and COR15am polypeptidesencoded by COR (cold-regulated) genes of Arabidopsis thaliana on thefreeze-induced fusion and leakage of liposomes[J]. Plant Physiol, 1996, 111(1): 313-327.
5 GUO W, WARD R W. Thomashow M. F. Characterization of a Cold-Regulated Wheat GeneRelated to Arabidopsis cor47[J]. Plant Physiol. 1992, 100(2): 915-922.
6 ARTUS N N, UEMURA M. Constitutive expression of the cold-regulated Arabidopsisthaliana COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proc Natl Acad Sci U S A,1996, 93(23): 13404-13409.
7 WEBB M S, STEPONKUS P L. Freeze-Induced Membrane Ultrastructural Alterations in Rye (Secale cereale) Leaves[J]. Plant Physiol, 1993,101(3): 955-963.
8 PUHAKAINEN T, HESS M W, MAKELA P. Overexpression of multiple dehydrin genes enhancestolerance to freezing stress in Arabidopsis[J]. Plant Mol Biol, 2004, 54(5): 743-753.
9 JAGLO-OTTOSEN K R, GILMOUR S J. Arabidopsis CBF1 overexpression induces COR genes andenhances freezing tolerance[J]. Science, 1998, 280(5360): 104-106.
10 PINOM T, SKINNER J S, JEKNIC Z, HAYES P M, SOWLDNERA H,THOMASHOW M F,CHEN T H. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces coldacclimation-associated physiological modifications in potato[J]. Plant Cell Environ, 2008, 31(4): 393-406.
11 STEPONKUS P L. Role of plasma membrane in cold acclimation and freezing injury in plants[J].Plant Physiol, 1984, 35(4): 5432584.
12 KNON A K, LI C, VANGUIFALVI A, GALIBA G, STOCKINGER E J, DUBCOBDKY J[J]. dentification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum. Plant Mol Biol, 2008, 67(3): 257-270.
13 SHINEARI Z. K, NAKASHIMA K, MIURA S,KASUGA M, SEKI M,YAMAGUCHI-SHINOZAKI K SHINOZA K I. An Arabidopsis gene family encodingDRE/CRT binding proteins involved in low-temperature-responsive gene expression[J].Biochem Biophys Res Commun, 1998, 250(1): 161-170.
14 STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, acis-acting DNA regulatory element that stimulates transcription in response tolow temperature and water deficit[J]. Proc Natl Acad Sci U S A, 1997, 94(3): 1035-1040.
15 LIU Q, KASUGA M, SAKUMA Y,ABE H, MIURA S,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K. Twotranscription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domainseparate two cellular signal transduction pathways in drought- andlow-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1391-1406.
16 GILMOUR S J, ZARKA D G. Low temperature regulation of the Arabidopsis CBF family of AP2transcriptional activators as an early step in cold-induced COR geneexpression[J]. Plant J, 1998, 16(4): 433-442.
17 XIN Z, MANDAOKAR A, CHEN J,LAST R T, BROWSE J. Arabidopsis ESK1 encodes a novelregulator of freezing tolerance[J]. Plant J, 2007, 49(5): 786-799.
18 GIMOUR S J, SEBOLT A M. Overexpression of the Arabidopsis CBF3 transcriptionalactivator mimics multiple biochemical changes associated with coldacclimation[J]. Plant Physiol. 2000, 124(4): 1854-1865.
19 GIMOUR S J, FOWLER S G, THOOMAHOW M F. Arabidopsis transcriptional activators CBF1,CBF2, and CBF3 have matching functional activities[J]. Plant Mol Biol, 2004, 54(5): 767-781.
20 LE M Q, ENGELSBERGER W R, HINCHA D K. Natural genetic variation in acclimationcapacity at sub-zero temperatures after cold acclimation at 4 degrees C indifferent Arabidopsis thaliana accessions[J]. Cryobiology, 2008, 57(2): 104-112.
21 MCKERSIE B D, CHEN Y. Superoxide dismutase enhances tolerance of freezing stress intransgenic alfalfa (Medicago sativa L.) [J]. Plant Physiol, 1993, 103(4): 1155-1163.
22 JAGLO K R, KLEFF S, AMUNDSEN K L,ZHANG X,HAAKE V ZHANG J Z,DEITS T,THOMASHOW M F.Components of the Arabidopsis C-repeat/dehydration-responsive element bindingfactor cold-response pathway are conserved in Brassica napus and other plantspecies[J]. Plant Physiol, 2001, 127(3): 910-917.
23 ZHANG X, FOWLER S G, CHENG H, LOU Y, RHEE S Y, STOCKINGER E J,THOMASHOW M F.Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBFregulon that differs from that of freezing-tolerant Arabidopsis[J]. Plant J, 2004, 39(6): 905-919.
24 PINO M T, SKINNER J S, PARK E J,JEKNIC Z,HAYES P M, THOMASHOW M F,CHEN T H. Use of astress inducible promoter to drive ectopic AtCBF expression improves potatofreezing tolerance while minimizing negative effects on tuber yield[J]. Plant Biotechnol J, 2007, 5(5): 591-604.
25 KASUG M, LIUQ, MIURA S,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K. Improving plant drought,salt, and freezing tolerance by gene transfer of a single stress-inducibletranscription factor[J]. Nat Biotechnol, 1999, 17(3): 287-291.
26 PENNYCOOKE J C, CHENG H, ROBERTS S M,YANG Q, RHEE S Y, STOKINGER E J. The lowtemperature-responsive, Solanum CBF1 genes maintain high identity in theirupstream regions in a genomic environment undergoing gene duplications,deletions, and rearrangements[J]. Plant Mol Biol, 2008, 67(5): 483-497.
27 PENNYCOOKE J C, CHENG H, STOKINGER E J. Comparative genomic sequence and expressionanalyses of Medicago truncatula and alfalfa subspecies falcataCOLD-ACCLIMATION-SPECIFIC genes[J]. Plant Physiol, 2008, 146(3): 1242-1254.
28 BADAWI M, REDDY Y V, AGHARBAOUI Z,TOMINAGA Y,DANYLUK J,SARHAN F,HOUDE M. Structure andfunctional analysis of wheat ICE (inducer of CBF expression) genes[J]. Plant Cell Physiol, 2008, 49(8): 1237-1249.
29 WANG J H, BIAN H W, HUANG C N, GE J G. Studies on the application of antifreezeproteins in cryopreservation of rice suspension cells[J]. Shi Yan Sheng Wu Xue Bao, 1999, 32(3): 271-276.
30 DUMAM J G, SERIANNI A S. The role of endogenous antifreeze protein enhancers in thehemolymph thermal hysteresis activity of the beetle Dendroides canadensis[J]. J Insect Physiol, 2002, 48(1): 103-111.
31 KUIPER M J, DAVIES P L, WALKER V K. A theoretical model of a plant antifreeze proteinfrom Lolium perenne[J]. Biophys J, 2001, 81(6): 3560-3565.
32 GRIFFITH M, ALA P, YANG D S, HON W C, MOFFATT B A. Antifreeze Protein Produced Endogenously in Winter Rye Leaves[J]. Plant Physiol, 1992, 100(2): 593-596.
33 WALLIS J G, WANG H, GUERRA D J. Expression of a synthetic antifreeze protein in potatoreduces electrolyte release at freezing temperatures[J]. Plant Mol Biol, 1997, 35(3): 323-330.
34 WORRALL D, ELIAS L, ASHFORD D,SMALLWOOD M,SIDEBOTTOM C, LILLFORD P,TELFORD J,HOLTC,BOWLES D. A carrot leucine-rich-repeat protein that inhibits icerecrystallization[J]. Science, 1998, 282(5386): 115-117.
35 YIN M A(尹明安),CUI H W(崔鸿文), FAN D M(樊代明),GUO L(郭立)..Carrot antifreeze protein gene cloning and plant expression vector[J]. Jour. of Northwest Sci-Tech Univ. of Agri . and For(西北农林科技大学学报), 2001,(01) (in Chinese).
36 FEI Y B(费云标),SUN L H(孙龙华),HUANG T(黄涛),SHU N H(舒念红),GAO(高素琴),JIAN L C(简令成). Isolalion and Identification Of Antifreeze high Activity In [J]. Acta Botanica Sinica(植物学报), 1994,(08).(in Chinese)
37 WANG W, WEI L, WANG G. Multistep purification of an antifreeze protein frommmopiptanthus mongolicus by chromatographic and electrophoretic methods[J]. J Chromatogr Sci, 2003, 41(9): 489-493.
38 RAYMOND B. Abandoned foundry in Brooklyn is reborn as a community medical center: Lutheran Medical Center[J]. Contract Inter, 1977, 136(5): 82-85.
39 DEVRIES A L. Antifreeze peptides and glycopeptides in cold-water fishes[J]. Annu Rev Physiol, 1983, 45: 245-260.
40 YANG D S, SAX M, CHAKRABARTTY A,HEW C L. Crystal structure of an antifreezepolypeptide and its mechanistic implications[J]. Nature, 1988, 333(6170): 232-237.
41 KNIGHT C A, DRIGGERS E, DEVRIES A L. Adsorption to ice of fish antifreezeglycopeptides 7 and 8[J]. Biophys J, 1993, 64(1): 252-259.
42 JIA Z, DAVIES P L. Antifreeze proteins: an unusual receptor-ligand interaction[J]. Trends Biochem Sci, 2002, 27(2): 101-106.
43 HINCHA D K, NEUKAMM B, SROR H A,SIEG F,WECKWARTH W,RUCKELS M,LULLEN-PELLERIN V,SCHRODER W, SCHMITT J M. Cabbage cryoprotectin is a member of the nonspecificplant lipid transfer protein gene family[J]. Plant Physiol, 2001, 125(2): 835-846.
44 HON W C, GRIFFITH M, MLYARZ A,KWOK Y C,YANG D S. Antifreeze proteins in winter ryeare similar to pathogenesis-related proteins[J]. Plant Physiol, 1995, 109(3): 879-889.
45 TOMCZAK M M, HINCHA D K, ESTRADA S D,FEENEY R E,CROWE J H. Antifreeze proteinsdifferentially affect model membranes during freezing[J]. Biochim Biophys Acta, 2001, 1511(2): 255-263.
46 VITAMVAS P, PRASIL I T. WCS120 protein family and frost tolerance during coldacclimation, deacclimation and reacclimation of winter wheat[J]. Plant Physiol Biochem, 2008, 46(11): 970-976.
47 OLDACH K H, BECKER D, LORZ H. Heterologous expression of genes mediating enhancedfungal resistance in transgenic wheat[J]. Mol Plant Microbe Interact, 2001, 14(7): 832-838.
48 GEORGES F, SALEEM M, CUTLER A J. Design and cloning of a synthetic gene for the flounderantifreeze protein and its expression in plant cells[J]. Gene, 1990, 91(2): 159-165.
49 COCA M, BORTOLOTTI C, RUFAT M,PENAS G,ERITJA R,THARREAU D,DELPOZO A M,MESSEGUERJ,SAN SEGUNDO B. Transgenic rice plants expressing the antifungal AFP protein fromAspergillus giganteus show enhanced resistance to the rice blast fungusMagnaporthe grisea. Plant Mol Biol[J]. 2004, 54(2): 245-259.
50 BASSETT C L, WISNIEWSKI M E, ARTLIP T S,RICHART G, NORELLI J L,FARRELL R E. Comparativeexpression and transcript initiation of three peach dehydrin genes[J].Planta, 2009, 230(1): 107-118.
51 HIGHTOWER R, BADEN C, PENZES E,LUND P, DUNSMUIR P. Expression of antifreeze proteins intransgenic plants[J]. Plant Mol Biol, 1991, 17(5): 1013-1021.
52 FAN Y, LIU B , WANG H B. Cloning of an antif reeze protein gene f rom carrot andits influence on cold tolerance in t ransgenic tobacco plants[J]. Plant Cell Rep, 2002, 21(3): 296-301.
53 HOLMBERG N, FARRES J, BAILEY J E,KALLIO P T. Targeted expression of a synthetic codonoptimized gene, encoding the spruce budworm antifreeze protein, leads toaccumulation of antifreeze activity in the apoplasts of transgenic tobacco[J]. Gene, 2001, 275(1): 115-124.
54 MORENO A B, MARTINEZ, DEL POZO A. San Segundo B. Biotechnologically relevant enzymesand proteins. Antifungal mechanism of the Aspergillus giganteus AFP against therice blast fungus Magnaporthe grisea[J]. Appl Microbiol Biotechnol, 2006, 72(5): 883-895.
55 MORENO A B, PENAS G, RUFAT M, BRAVO J M, MESSEGUER J,SAN SEGUNDO B. Pathogen-inducedproduction of the antifungal AFP protein from Aspergillus giganteus confersresistance to the blast fungus Magnaporthe grisea in transgenic rice[J]. Mol Plant Microbe Interact, 2005, 18(9): 960-972.
56 ZHANG S, WEI Y, PAN H. Transgenic rice plants expressing a novel antifreezeglycopeptide possess resistance to cold and disease[J]. Z Naturforsch. 2007,62(7-8): 583-591.
57 ROUTABOUL J M, FISCHER S F, BRWSE J. Trienoic fatty acids are required to maintainchloroplast function at low temperatures[J]. Plant Physiol, 2000, 124(4): 1697-1705.
58 STEPONKUS P L, LYNCH D V. Freeze/thaw-induced destabilization of the plasma membrane andthe effects of cold acclimation[J]. J Bioenerg Biomembr, 1989, 21(1): 21-41.
59 BARarclay, K. D., McKersie B. D. Peroxidation reactions in plant membranes: effects offree fatty acids. Lipids[J]. 1994, 29(12): 877-883.
60 UEMURA M, STEPONKUS P L. A Contrast of the Plasma Membrane Lipid Composition of Oatand Rye Leaves in Relation to Freezing Tolerance[J]. Plant Physiol, 1994, 104(2): 479-496.
61 UEMURA M, STEPONKUS P L. Effect of Cold Acclimation on the Lipid Composition of theInner and Outer Membrane of the Chloroplast Envelope Isolated from Rye Leaves[J]. Plant Physiol, 1997, 114(4): 1493-1500.
62 VALLURUa R, VAN DEN ENDE W. Plant fructans in stress environments: emerging concepts andfuture prospects[J]. J Exp Bot, 2008, 59(11): 2905-2916.
63 SPAGNOLETTA A, DE SANTIS A, TAMPIERI E, BARALDI E, BACHI A, GENCHI G. Identification andkinetic characterization of HtDTC, the mitochondrialdicarboxylate-tricarboxylate carrier of Jerusalem artichoke tubers[J]. JBioenerg Biomembr, 2006, 38(1): 57-65.
64 BOROCHOV A, WALKER M A, KENDALL E J,PAULS K P,MCKERSIE B D. Effect of a Freeze-ThawCycle on Properties of Microsomal Membranes from Wheat[J]. Plant Physiol, 1987, 84(1): 131-134.
65 ZHANG X H(张新华), LI F J(李富军). Research Advances of Several Physical Techn- iques in Improving Plan t Res istance[J]. Act a Bot . Boreal.-Occident. Sin(西北植物学报), 2005,25(09) :1894—1899. (in Chinese)
66 CHANG B L(常碧龙), LV Y G(吕永刚), CUI J(崔静),FENG X D(冯晓东). Effect of Low Temperature Stress on Physiological and Biochemical Indices of Cichaorium endivia Seedling[J]. Journal of Anhui Agri . Sci(安徽农业科学). 2008,36(20) : 8441 - 8442(in Chinese)
67 LIVINGSTON D P, ERD, HINCHA D K, HEYER A G. Fructan and its relationship to abiotic stresstolerance in plants[J]. Cell Mol Life Sci, 2009, 66(13): 2007-2023.
68 TAKAGI T, NAKAMURA M, HAYASHI H, INUGSGI R, YANO R,NISHIDA I. The leaf-order-dependentenhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes isnot correlated with the transcript levels of the cold-inducible transcriptionfactors of CBF/DREB1[J]. Plant Cell Physiol, 2003, 44(9): 922-931.
69 DAI W H(戴文浩), ZHANG Z(章镇), ZHAO P H(赵培华),SHI Y H(史永红).Mume several physiological indexes of winter [J]. Jurnal of Fruit science(果树科学), 1997,(04) (in Chinese).
70 ZHANG J L(张纪林), XIE X J(谢晓金), JIAO Z Y(教忠意),ZHANG L(张璐),HAO R M(郝日明). The Comparison of Frozen Resistance of Several Tree Species of I lex L [J]. Acta Horticulturae Sinica(园艺学报), 2005,(03)(in Chinese).
71 SHOU H, BORDALLO P, FAN J B,YEAKLEY J M,BIBIKOVA M,SHEEN J,WANG K. Expression of anactive tobacco mitogen-activated protein kinase kinase kinase enhances freezingtolerance in transgenic maize[J]. Proc Natl Acad Sci U S A, 2004, 101(9): 3298-3303.
72 GUSTA L V, WISNIEWSKI M, NESBITT N T,GISTA M L. The effect of water, sugars, andproteins on the pattern of ice nucleation and propagation in acclimated andnonacclimated canola leaves[J]. Plant Physiol, 2004, 135(3): 1642-1653.
73 WITHERS L A, KING P J. Proline: A Novel Cryoprotectant for the Freeze Preservation ofCultured Cells of Zea mays L[J]. Plant Physiol, 1979, 64(5): 675-678.
74 REYES-DIAZ M, ALBERDI M, PIPER F,BRAVO L A,CORCUERA L J. Low temperature responses ofNothofagus dombeyi and Nothofagus nitida, two evergreen species from southcentral Chile[J]. Tree Physiol, 2005, 25(11): 1389-1398.
75 KAMATA T, UEMURA M. Solute accumulation in heat seedlings during cold acclimation:contribution to increased freezing tolerance[J]. Cryo Letters, 2004, 25(5): 311-322.
76 SUN S R(孙守如), ZHU L(朱磊), ZHANG J P(张菊平),CHEN Y L(陈艳丽),GONG Z H(巩振辉). Growth and Physiological Characteristics of Different Pumpkin Cultivars underLow Temperature Stress[J]. Act a Bot . Boreal.-Occident. Sin(西北植物学报), 2008, 28(11): 2292 - 2298(in Chinese).
77 PARVANOVA D, IVANOV S, KONSTANTINOVA T,KARANOV E,ATANASSOV A, TSVETKOV T,ALEXIEVAV,DJILIANOV D. Transgenic tobacco plants accumulating osmolytes show reduced oxidativedamage under freezing stress[J]. Plant Physiol Biochem, 2004, 42(1): 57-63.
78 SCEBBA F, SEBUSTIANI L. Vitagliano C. Changes inactivity of antioxidant enzymes inwheat ( Triticum aestivum L. ) seedlings under cold acclimation[J]. Physiology of Plant, 1998, 104(2): 747-752.
79 GAO Q, WU Y, XU K. Responses of grafted eggplant seedling roots to low temperaturestress. [J].Journal of Applied Ecology,2006, 17(3): 390-394.
80 VRANOVA E, INZE D, VAN BREUSEGEM F. Signal transduction during oxidative stress[J].J Exp Bot, 2002, 53(372): 1227-1236.
81 VAN BREUSEGEM F, SLOOTEN L,STASSART J M,MOENS T,BOTTERMAN J, VAN MONTAGU M, INZE D.Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress toleranceto transgenic maize[J]. Plant Cell Physiol ,1999, 40(5): 515-523.
82 GUO Z Q(郭志强), HOU L B(侯立白), LI X(李霞),QI L(齐磊),ZHAO M,(赵明)DONG Z Q(董志强). The Effects of Chilling- res is tant Agents on Corn Growth, Phys iological and Biochemical Changes in Low Temperature Stress [J]. Journal of Maize Sciences, 2008,(03) (in Chinese).
83 MURNAGHAN J, JONES K S,BOWLEY S R. Iron-superoxide dismutase expression in transgenicalfalfa increases winter survival without a detectable increase in photosyntheticoxidative stress tolerance[J]. Plant Physiol, 2000, 122(4): 1427-1437.
84 MCKERSIE B D, BOWLEY S R., JONES K S. Winter survival of transgenic alfalfaoverexpressing superoxide dismutase[J]. Plant Physiol, 1999, 119(3): 839-848.
85 WU G, WILEN R W, ROBERTSON A J,GUSTA L V. Isolation, chromosomal localization, anddifferential expression of mitochondrial manganese superoxide dismutase andchloroplastic copper/zinc superoxide dismutase genes in wheat[J]. Plant Physiol, 1999, 120(2): 513-520.
86 KOSTER K L, LYNCH D V. Solute Accumulation and Compartmentation during the ColdAcclimation of Puma Rye[J]. Plant Physiol, 1992, 98(1): 108-113.
87 SAKAMOTO A, MURATA N. Genetic engineering of glycinebetaine synthesis in plants: currentstatus and implications for enhancement of stress tolerance[J]. J Exp Bot, 2000, 51(342): 81-88.
88 SELINIOTI E, MANETAS Y, GAVALAS N A. Cooperative Effects of Light and Temperature on theActivity of Phosphoenolpyruvate Carboxylase from Amaranthus paniculatus L[J]. Plant Physiol, 1986, 82(2): 518-522.
89 MOHANTY R C, MOHANTY L, MOHAPARA P K. Change in toxicity effect of mercury at staticconcentration to Chlorella vulgaris with addition of organic carbon sources[J].Acta Biol Hung, 1993, 44(2-3): 211-222.
90 KISHITANI S, WATANABE K, YASUDA S. Accumulation of glycinebetaine during cold acclimationand f reezing tolerance in leaves of winter and spring barley plants Plant[J].Cell and Environment, 1994, 17 89 - 95.
91 ZHAO Y L(赵云雷), YE W W(叶武威), WANG J J(王俊娟) ,FAN B X(樊保香),SONG L Y(宋丽艳). Review of DNA Methylation and Plant Stress-Tolerance [J]. Act a Bot . Boreal.-Occident. Sin(西北植物学报), 2009,29(7):1479-1489(in Chinese)

查看相关论文专题
加入收藏  打印本文
上一篇论文:蝈蝈不同发育期过氧化物酶同工酶的研究-论文网
下一篇论文:小球藻活性成分的研究及食品方面的开发进展_应用-论文网
科技论文分类
科技小论文 数学建模论文
数学论文 节能减排论文
数学小论文 低碳生活论文
物理论文 建筑工程论文
网站设计论文 农业论文
图书情报 环境保护论文
计算机论文 化学论文
机电一体化论文 生物论文
网络安全论文 机械论文
水利论文 地质论文
交通论文
相关生物论文
    无相关信息
最新生物论文
读者推荐的生物论文