论文导读:图像增强的目的是要增强视觉效果,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,以达到改善图像质量、丰富信息量的目的,并加强图像判读和识别效果的图像处理方法。采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图像中的颗粒噪声(如椒盐噪声)。它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。在对比了多种去噪方法之后,本文发现经典的图像去噪方法如:维纳滤波和中值滤波,一直存在着去噪之后导致图像模糊的问题。
关键词:图像增强,均值滤波,中值滤波,维纳滤波
1 引言
获取和传输图像的过程往往会发生图像失真,所得到图像和原始图像有某种程度的差别。这种差异如果太大,就会影响人和机器对于图像的理解,在许多情况下,人们不清楚引起图像降质的具体物理过程及其数学模型,但却能根据经验估计出使图像降质的一些可能原因,针对这些原因采取简便有效的方法,改善图像质量。图像增强的目的是要增强视觉效果,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,以达到改善图像质量、丰富信息量的目的,并加强图像判读和识别效果的图像处理方法。
其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像质量降低的原因,处理后的图像不一定逼近原始图像。
2 图像增强典型方法
图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算。基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。平滑技术用于平滑图像中的噪声。免费论文网。平滑噪声可以在空间域中进行,基本方法是求像素灰度的平均值或中值。为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。
2.1 均值滤波
采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图像中的颗粒噪声(如椒盐噪声)。领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与领域半径成正比。几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图像细节。谐波均值滤波器对盐噪声效果更好,但是不适用于胡椒噪声。它善于处理像高斯噪声那样的其他噪声。免费论文网。免费论文网。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数符号选择错了可能会引起灾难性的后果。
2.2 中值滤波
它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图像的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图像不宜采用中值滤波的方法。
2.3 自适应维纳滤波
它能根据图像的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像 与原始图像 的均方误差 最小。该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。维纳滤波器对具有白噪声的图像滤波效果最佳。
3 仿真结果



![C%1]4{`~88{3T6ML]QSG2PW](/picture/pic20110423/226023.jpg)
图1 不同增强方法的仿真结果
4 结论
在对比了多种去噪方法之后,本文发现经典的图像去噪方法如:维纳滤波和中值滤波,一直存在着去噪之后导致图像模糊的问题。对于椒盐噪声和高斯噪声,均值滤波的效果相对其他滤波效果较好,其次为中值滤波,但是中值滤波对一些如点、线、尖顶细节等处理效果较差。一次维纳滤波及二次维纳滤波对高斯噪声的处理比对椒盐噪声处理的好。
参考文献:
1. 陈扬,等.MATLAB 6.x图形编程与图像处理[M].西安:西安电子科技大学出版社,2002.10
2. 王家文,李仰军.MATLAB7.0图形图像处理.北京:国防工业出版社,2006
3. 朱喜军.MATLAB在信号与图像处理中的应用.北京:电子工业出版社,2009
|