欢迎来到论文网! 识人者智,自知者明,通过生日认识自己! 生日公历:
网站地图 | Tags标签 | RSS
论文网 论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台。lunwenf@yeah.net。
您当前的位置:首页 > 科技论文 > 计算机论文

数据仓库技术及在人力资源系统的设计

时间:2016-04-29  作者:朱涛 杨森

摘要:数据仓库是当前信息领域的热门方向。本文阐述了数据仓库、联机分析处理、数据挖掘的概念,并对OLAP和数据挖掘技术进行了探讨;并在此基础上,提出了数据仓库技术在人力资源系统的设计方案。
论文关键词:数据仓库,数据挖掘,联机分析处理,人力资源系统

1数据仓库概念及其体系结构

数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non – Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。与其他数据库应用相比,数据仓库更像一种过程,即对分散的业务数据进行整合、加工和分析的过程,而不是一种可以购买的产品。

数据仓库包括如下几个部分,如图1所示。

(1)原数据部分,数据提取、清洗、转换和装载(ETL)部分,以及中心数据仓库部分。经过这些环节,可以完成将数据从源数据装载到数据仓库中的过程。

(2)数据集市。根据部门的需要,可以从数据仓库中形成数据集市,以满足部门及数据分析的需要。

图1 数据仓库的体系结构

(3)数据访问和分析部分。在数据访问和分析的过程中,可以采用OLAP分析及数据挖掘技术进行分析,得出有关的分析结果。

2 数据分析技术

数据分析技术是建立在一定数据基础上,进行分析的方式和方法,通常包括:OLAP、数据挖掘、统计分析、联机挖掘等技术。需要说明的是,数据分析技术并不一定需要建立在数据仓库的基础上,但有了数据仓库之后,数据分析的效率和能力将大大提高。通过与数据分析技术的结合,才能发现许多前所未有的分析结果,并为管理者提供科学的决策依据。

2.1 OLAP(联机分析处理)

OLAP分析与数据仓库的关系非常紧密。数据仓库的建立,解决了依据主题进行数据存储的问题,提高了数据的存取速度,而OLAP分析构成了数据仓库的表现层,将数据仓库中的数据通过不同的维和指标,灵活的展现出来,提高数据的展现能力,进而提高数据的分析能力。

OLAP涉及以下术语:维度(Dimension)、量度(Measure)、级别(Level)、成员(Member)、多维数据集/立方体(Cube)、时间粒度(Time granularity)、星型结构/维度(Star schema)、雪花型结构/维度(Snowflake schema)。

OLAP对不同维度进行肉眼观察,并非运用更科学的概率论或其它数学工具去测度;而肉眼观察带有主观的“有色眼镜”,故缺乏科学客观的评判手段和方法。其次,当遇到维度过多、数据量过大的实际情况时,OLAP工作效率急剧下降。再次,若自变量和自变量之间存在的线性关系或交互作用,OLAP无法分辨“混杂因子”或找出主要影响因素。因此,OLAP无法完全满足在分析信息系统中最基本、最重要和最关键的要求:面对主题(商务需求)进行分析;而在实际信息处理中,OLAP无法实现分析的主题或任务,则需要数据分析或数据挖掘更强大的分析工具、技术来实现。计算机论文

2.2 数据挖掘

数据挖掘亦称为数据开采,它首先由W. J. Frawley、G. Piatesky-Shapiro等人提出。数据挖掘是一种数据分析工具,它从大量的、不完全的、有噪声的、模糊的、随机的数据中提取人们感兴趣的数据模式、数据的普遍关系及其隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式,其目的是帮助管理者寻找数据间潜在的关联,发现被忽略的要素,而这些信息对预测趋势和决策行为将起到一定的支持作用。

数据库中的数据挖掘是一个多步骤的处理过程,这些步骤有:

(1)数据定义阶段。主要了解相关领域的有关情况,熟悉背景知识,弄清楚用户决策分析对信息的要求。

(2)数据提取阶段。根据要求从数据库中提取相关的数据。

(3)数据预处理阶段。主要对前一阶段产生的数据进行再加工,检查数据的完整性及数据的一致性,对其中的噪音数据进行处理,对缺损的数据进行填补。

(4)数据挖掘阶段。主要是运用选定的知识发现算法,从数据中提取出用户所需要的知识,这些知识可以用一种特定的方式表示或使用一些常用的表示方式。

(5)知识评估阶段。将发现的知识以用户能了解的方式呈现,根据需要对知识发现过程中的某些处理阶段进行优化,直到满足要求。

2.3数据仓库、0LAP和数据挖掘之间的关系

在数据仓库化的决策支持系统中,应将数据仓库、OLAP、数据挖掘进行有机结合,其所担当的角色分别为:

(1)数据仓库用于数据的存储和组织,它从事务处理系统中抽取数据,并对其进行综合、集成与转换,提供面向全局的数据视图;OLAP致力于数据的分析;数据挖掘则专注于知识的自动发现。

(2)在数据仓库和OLAP、数据仓库和数据挖掘之间存在着单向支持的关系;在数据挖掘与OLAP之间,存在双向联系,即数据挖掘为OLAP提供分析的模式,OLAP对数据挖掘的结果进行验证,并给予适当的引导。三者关系如图2所示。

人力资源系统

图2 数据仓库、OLAP、数据挖掘的关系

3、数据仓库技术及在人力资源系统的设计

人力资源系统的数据量大,但相对分散,统计功能不足,利用率低。为了更好的发挥其数据的功能,提出人力资源数据仓库系统的设计。该系统主要由ETL系统、OLAP系统、客户端组件系统三部分组成,其整体框架如图3所示。

数据仓库技术及在人力资源系统的设计

图3 人力资源数据仓库系统框架图

ETL系统负责定期的从OLTP系统中将业务数据库的数据导入数据仓库,在导入过程中会依据OLAP系统中模式设计的要求对数据进行清洗和转换,以符合数据仓库的结构要求。

OLAP系统由三部分组成:OLAP引擎、OLAP数据展示模块和元数据管理模块。OLAP引擎负责读入数据仓库中的数据,并根据模式定义构建多维数据集,使数据以多维格式展示。OLAP数据展示模块负责将多维数据集展现为一个联机分析处理(OLAP)页面,用户可以在页面上执行典型的联机分析处理导航操作,如上卷、下钻和旋转等。元数据管理模块负责对模式设计文件进行管理。

客户端组件系统负责访问用户的登录验证,并根据访问用户的访问权限提供对应的数据展现。

4、结束语

本文阐述了数据仓库、OLAP、数据挖掘的概念,并对OLAP和数据挖掘技术进行了探讨。并在此基础上,提出了人力资源数据仓库系统的设计方案。数据仓库已经成为现代信息领域的必不可少的基础设施之一,我们应该使用好数据仓库,使之成为迎接挑战的有力武器。


参考文献
[1] W. H. Inmon 数据仓库[M] 机械工业出版社 2003
[2] 王珊等 数据仓库技术与联机分析处理[M] 科学出版社 1998
[3] 林杰斌等 数据挖掘与OLAP理论与实务[M] 清华大学出版社 2003
[4] 彭木梗 数据仓库技术与实现[M] 电子工业出版社 2002

 

查看相关论文专题
加入收藏  打印本文
上一篇论文:Viterbi改进算法研究
下一篇论文:基于SAP平台的企业门户分级授权的实现
科技论文分类
科技小论文 数学建模论文
数学论文 节能减排论文
数学小论文 低碳生活论文
物理论文 建筑工程论文
网站设计论文 农业论文
图书情报 环境保护论文
计算机论文 化学论文
机电一体化论文 生物论文
网络安全论文 机械论文
水利论文 地质论文
交通论文
相关计算机论文
最新计算机论文
读者推荐的计算机论文